1 |
XU M M, BAI Y C, QU S S, et al. Semantic part RCNN for real-world pedestrian detection[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Washington D. C., USA: IEEE Press, 2019: 45-54.
|
2 |
HOU Y, ZHENG L, GOULD S. Multiview detection with feature perspective transformation[C]//Proceedings of the 16th European Conference on Computer Vision. Berlin, Germany: Springer, 2020: 1-18.
|
3 |
李颀, 王娇, 邓耀辉. 基于遮挡感知的行人检测与跟踪算法. 传感器与微系统, 2023, 42(4): 126- 130.
URL
|
|
LI Q, WANG J, DENG Y H. Pedestrian detection and tracking algorithm based on occlusion-aware. Transducer and Microsystem Technologies, 2023, 42(4): 126- 130.
URL
|
4 |
ZHANG S F, WEN L Y, BIAN X, et al. Occlusion-aware R-CNN: detecting pedestrians in a crowd[C]//Proceedings of European Conference on Computer Vision. Berlin, Germany: Springer, 2018: 657-674.
|
5 |
刘毅, 于畅洋, 李国燕, 等. UAST-RCNN: 遮挡行人的目标检测算法. 电子测量与仪器学报, 2022, 36(12): 168- 175.
URL
|
|
LIU Y, YU C Y, LI G Y, et al. UAST-RCNN: object detection algorithm for blocking pedestrians. Journal of Electronic Measurement and Instrumentation, 2022, 36(12): 168- 175.
URL
|
6 |
XU C, WANG J W, YANG W, et al. RFLA: Gaussian receptive field based label assignment for tiny object detection[C]//Proceedings of the 17th European Conference Computer Vision. Berlin, Germany: Springer, 2022: 526-543.
|
7 |
ZHAO Q J, SHENG T, WANG Y T, et al. M2Det: a single-shot object detector based on multi-level feature pyramid network[C]//Proceedings of AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2019: 9259-9266.
|
8 |
黄凤琪, 陈明, 冯国富. 基于可变形卷积的改进YOLO目标检测算法. 计算机工程, 2021, 47(10): 269-275, 282.
doi: 10.19678/j.issn.1000-3428.0059096
|
|
HUANG F Q, CHEN M, FENG G F. Improved YOLO object detection algorithm based on deformable convolution. Computer Engineering, 2021, 47(10): 269-275, 282.
doi: 10.19678/j.issn.1000-3428.0059096
|
9 |
樊嵘, 马小陆. 面向拥挤行人检测的改进DETR算法. 计算机工程与应用, 2023, 59(19): 159- 165.
URL
|
|
FAN R, MA X L. Improved DETR for crowded pedestrian detection. Computer Engineering and Applications, 2023, 59(19): 159- 165.
URL
|
10 |
WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[EB/OL]. [2023-04-11]. https://arxiv.org/abs/2207.02696.
|
11 |
|
12 |
TAN M X, PANG R M, LE Q V. EfficientDet: scalable and efficient object detection[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 10781-10790.
|
13 |
WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of European Conference on Computer Vision. Berlin, Germany: Springer, 2018: 3-19.
|
14 |
CHEN X L, LIAN Q W, CHEN X L, et al. Surface crack detection method for coal rock based on improved YOLOv5. Applied Sciences, 2022, 12(19): 9695.
doi: 10.3390/app12199695
|
15 |
ZHANG S F, XIE Y L, WAN J, et al. WiderPerson: a diverse dataset for dense pedestrian detection in the wild. IEEE Transactions on Multimedia, 2020, 22(2): 380- 393.
doi: 10.1109/TMM.2019.2929005
|
16 |
|
17 |
王金鹏, 周佳良, 张跃跃, 等. 基于优选YOLOv7模型的采摘机器人多姿态火龙果检测系统. 农业工程学报, 2023,(8): 276- 283.
URL
|
|
WANG J P, ZHOU J L, ZHANG Y Y, et al. A multi-pose dragon fruit detection system for picking robot based on the optimal YOLOv7 model. Transactions of the Chinese Society of Agricultural Engineering, 2023,(8): 276- 283.
URL
|
18 |
|
19 |
LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 8759-8768.
|
20 |
DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16×16 words: Transformers for image recognition at scale[EB/OL]. [2023-04-11]. https://arxiv.org/abs/2010.11929.
|
21 |
DING X H, ZHANG X Y, MA N N, et al. RepVGG: making VGG-style ConvNets great again[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2021: 13733-13742.
|
22 |
|
23 |
ZHENG Z H, WANG P, REN D W, et al. Enhancing geometric factors in model learning and inference for object detection and instance segmentation. IEEE Transactions on Cybernetics, 2022, 52(8): 8574- 8586.
doi: 10.1109/TCYB.2021.3095305
|
24 |
ZHANG Y F, REN W Q, ZHANG Z, et al. Focal and efficient IoU loss for accurate bounding box regression. Neurocomputing, 2022, 506, 146- 157.
doi: 10.1016/j.neucom.2022.07.042
|
25 |
|
26 |
|
27 |
LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proceedings of ECCV'16. Berlin, Germany: Springer, 2016: 21-37.
|
28 |
LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of IEEE International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2017: 2980-2988.
|
29 |
REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137- 1149.
doi: 10.1109/TPAMI.2016.2577031
|
30 |
|
31 |
|
32 |
NEUBECK A, VAN GOOL L. Efficient non-maximum suppression[C]//Proceedings of the 18th International Conference on Pattern Recognition. Washington D. C., USA: IEEE Press, 2006: 850-855.
|