作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2013, Vol. 39 ›› Issue (4): 9-13,17. doi: 10.3969/j.issn.1000-3428.2013.04.003

• 专栏 • 上一篇    下一篇

带硬时间窗模糊车辆路径问题的多目标优化

王连锋,宋建社,曹继平,叶 庆   

  1. (第二炮兵工程大学科研部,西安 710025)
  • 收稿日期:2012-07-09 出版日期:2013-04-15 发布日期:2013-04-12
  • 作者简介:王连锋(1985-),男,博士研究生,主研方向:智能计算;宋建社,教授、博士生导师;曹继平,讲师;叶 庆,博士研究生
  • 基金资助:

    国家自然科学基金资助重点项目(61132008)

Multi-objective Optimization for Fuzzy Vehicle Routing Problem with Hard Time Windows

WANG Lian-feng, SONG Jian-she, CAO Ji-ping, YE Qing   

  1. (Science Research Department, The Second Artillery Engineering University, Xi’an 710025, China)
  • Received:2012-07-09 Online:2013-04-15 Published:2013-04-12

摘要:

针对带硬时间窗车辆路径问题的多重模糊性,基于模糊可信性理论建立多目标模糊期望值模型,提出求解该问题的自适应混合多目标粒子群优化算法。该算法根据相位空间的思想给出一种实数编码方式,设计双存档机制,分别存储演化过程中产生的非支配解和有益不可行解,并引入自适应局部搜索、变异和粒子全局向导选择策略。仿真实验结果表明,与多目标进化算法相比,该算法可以获得更优的Pareto解集。

关键词: 车辆路径问题, 模糊可信性, 粒子群算法, 多目标优化, 约束, 时间窗, Pareto最优解

Abstract:

Aiming at the vehicle routing problem with hard time windows and multiple fuzzy characteristics, a multi-objective fuzzy expected model is designed based on fuzzy credibility theory, and an adaptive hybrid Multi-objective Particle Swarm Optimization(MOPSO) is proposed to solve the fuzzy vehicle routing model. The algorithm puts forward a particle encoding method according as phase-space, and designs a double archiving mechanism which stores the non-dominated solutions and excellent infeasible solutions separately. It also introduces adaptive strategies on local search, mutation and selection for particle global guide. The compareative experiments with multi-objective evolutionary algorithm verify that the method is capable of getting more excellent Pareto sets.

Key words: vehicle routing problem, fuzzy credibility, particle swarm algorithm, multi-objective optimization, constraint, time windows, Pareto optimal solution

中图分类号: