参考文献
[1] Vapnik V N. Statistical Learning Theory[M]. New York, USA: Wiley, 1998.
[2] Reran A, Stephen K, Nathalie J. Applying Support Vector Machines to Imbalanced Datasets[C]//Proc. of the 15th European Conference on Machines Learning. Berlin, Germany: Springer-Verlag, 2004: 39 -50.
[3] Gustavo E A P A, Ronaldo B, Prati C, et al. A Study of the Behavior of Several Methods for Balancing Machine Learning Training Data[J]. SIGKDD Explorations, 2004, 6(1): 20-29.
[4] Kubat M, Matw I S. Addressing the Curse of Imbalanced Training Sets: One-sided Selection[C]//Proc. of the 14th International Conference on Machine Learning. San Francisco, USA: Morgan Kaufmann, 1997: 179-186.
(下转第232页)
(上接第227页)
[5] Chawla N V, Hall L O, Bowyer K W, et al. SMOTE: Synthetic Minority Oversampling Technique[J]. Journal of Articial Intelligence Research, 2002, 16(3): 321-357.
[6] He Haibo, Garcia E A. Learning from Imbalanced Data[J]. IEEE Transactions on Knowledge and Data Engineering, 2009, 21(9): 1263-1284.
[7] Zhou Zhihua, Liu Xuying. Training Cost-sensitive Neural Networks with Methods Addressing the Class Imbalance Problem[J]. IEEE Transactions on Knowledge and Data Engineering, 2006, 18(1): 63-77.
[8] Alejo R, Sotoca J M, Casa? G A, et al. An Empirical Study for the Multi-class Imbalance Problem with Neural Networks[EB/OL]. (2008-10-20). http://dblp.uni-trier.de/db/ conf/ciarp/ciarp2008.html#AlejoSC08.
[9] Veropulos K, Campbell C, Cristianini N. Controlling the
Sensitivity of Support Vector Machine[C]//Proc. of International Joint Conference on Artificial Intelligence. Stockholm, Sweden: [s. n.], 1999: 55-60.
[10] 刘万里, 刘三阳, 薛贞霞. 不平衡支持向量机的平衡方 法[J]. 模式识别与人工智能, 2008, 21(2): 136-141.
[11] 刘万里, 刘三阳. SVM中不平衡数据的分离超平面的校正方法[J]. 计算机工程与应用, 2008, 44(19): 169-171.
[12] 刘万里, 刘三阳, 王金艳. 不平衡支持向量机的调整方 法[J]. 计算机科学, 2009, 36(3): 148-155.
[13] 林智勇, 郝志峰, 杨晓伟. 不平衡数据分类的研究现状[J]. 计算机应用研究, 2008, 25(2): 332-336.
[14] Lin Yi, Lee Y, Wahba G. Support Vector Machines for Classification in Nonstandard Situations[J]. Machine Learning, 2002, 46(2): 191-202.
编辑 索书志 |