作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程

• 人工智能及识别技术 • 上一篇    下一篇

基于多特征融合的前向车辆检测方法

李 星,郭晓松,郭君斌   

  1. (第二炮兵工程大学兵器发射理论与技术国家重点学科实验室,西安 710025)
  • 收稿日期:2013-01-18 出版日期:2014-02-15 发布日期:2014-02-13
  • 作者简介:李 星(1988-),男,硕士研究生,主研方向:机器视觉,数字图像处理;郭晓松,教授、博士生导师;郭君斌,讲师、博士后

Forward Vehicle Detection Method Based on Multi-feature Fusion

LI Xing, GUO Xiao-song, GUO Jun-bin   

  1. (State Key Laboratory of Weapon Launching Theory and Technology, The Second Artillery Engineering University, Xi’an 710025, China)
  • Received:2013-01-18 Online:2014-02-15 Published:2014-02-13

摘要: 针对传统车辆检测方法定位精度不高的问题,提出一种基于多特征融合的前向车辆检测方法。采用基于直方图分析和自适应双阈值的方法分别实现阴影和边缘特征的准确分割,并通过阴影和边缘特征的综合分析,生成车辆假设区域。利用对称性、纹理和轮廓匹配度3个特征融合得到的综合特征对获得的车辆假设区域进行验证,剔除其中的误检区域。实验结果证明,该方法能在不同光照条件下自适应地进行车辆检测,检测率可达92%以上,且在检测率和误检率2项指标上均优于传统基于学习的方法。

关键词: 自适应双阈值, 特征提取, 多特征融合, Fisher准则, 前向车辆检测

Abstract: A forward vehicle detection method based on multi-feature fusion is proposed in order to improve the accuracy of vehicle detection. The shadow and edge features of vehicle are segmented accurately by using histogram analysis method and adaptive dual-threshold method respectively. The initial candidates are generated by combining edge and shadow features and these initial candidates are further verified by using an integrated feature based on the fusion of symmetry, texture and shape matching degree features. A threshold is used to remove the non-vehicle initial candidates. Experimental results show that this method can adapt to different light conditions robustly with a detection rate over 92%. The proposed method is better than traditional methods based on learning with a higher detection rate and lower error rate.

Key words: adaptive dual-threshold, feature extraction, multi-feature fusion, Fisher criterion, forward vehicle detection

中图分类号: