| 1 | 吴海滨, 徐若彤, 王爱丽, 等. 基于计算机视觉的人体内腔三维重建技术综述. 计算机工程, 2021, 47(10): 1- 15.  doi: 10.3778/j.issn.1002-8331.2101-0402
 | 
																													
																						|  | WU H B, XU R T, WANG A L, et al. Overview of 3D human lumen reconstruction technology based on computer vision. Computer Engineering, 2021, 47(10): 1- 15.  doi: 10.3778/j.issn.1002-8331.2101-0402
 | 
																													
																						| 2 | 张宇翔, 任爽. 定位技术在虚拟现实中的应用综述. 计算机科学, 2021, 48(1): 308- 318.  URL
 | 
																													
																						|  | ZHANG Y X, REN S. Overview of application of positioning technology in virtual reality. Computer Science, 2021, 48(1): 308- 318.  URL
 | 
																													
																						| 3 | 卞殷旭, 邢涛, 邓伟杰, 等. 基于深度学习的色彩迁移生物医学成像技术. 红外与激光工程, 2022, 51(2): 331- 348.  URL
 | 
																													
																						|  | BIAN Y X, XING T, DENG W J, et al. Deep learning-based color transfer biomedical imaging technology. Infrared and Laser Engineering, 2022, 51(2): 331- 348.  URL
 | 
																													
																						| 4 | BESL P J, MCKAY N D. Method for registration of 3-D shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992,(2): 239- 256. | 
																													
																						| 5 | YANG J L, LI H D, JIA Y D. Go-ICP: solving 3D registration efficiently and globally optimally[C]//Proceedings of IEEE International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2013: 1457-1464. | 
																													
																						| 6 | CHOY C, PARK J, KOLTUN V. Fully convolutional geometric features[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2019: 8958-8966. | 
																													
																						| 7 | AO S, HU Q Y, YANG B, et al. SpinNet: learning a general surface descriptor for 3D point cloud registration[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2021: 11753-11762. | 
																													
																						| 8 | BAI X Y, LUO Z X, ZHOU L, et al. D3Feat: joint learning of dense detection and description of 3D local features[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 6359-6367. | 
																													
																						| 9 | THOMAS H, QI C R, DESCHAUD J E, et al. KPConv: flexible and deformable convolution for point clouds[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2019: 6411-6420. | 
																													
																						| 10 | HUANG S Y, GOJCIC Z, USVYATSOV M, et al. PREDATOR: registration of 3D point clouds with low overlap[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2021: 4267-4276. | 
																													
																						| 11 | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2017: 6000-6010. | 
																													
																						| 12 | LI Y, HARADA T. Lepard: learning partial point cloud matching in rigid and deformable scenes[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2022: 5554-5564. | 
																													
																						| 13 | SINKHORN R, KNOPP P. Concerning nonnegative matrices and doubly stochastic matrices. Pacific Journal of Mathematics, 1967, 21(2): 343- 348.  doi: 10.2140/pjm.1967.21.343
 | 
																													
																						| 14 | KUHN H W. The Hungarian method for the assignment problem. Naval Research Logistics Quarterly, 1955, 2(1/2): 83- 97. | 
																													
																						| 15 | FISCHLER M A, BOLLES R C. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM, 1981, 24(6): 381- 395.  doi: 10.1145/358669.358692
 | 
																													
																						| 16 | XU M T, DING R Y, ZHAO H S, et al. PAConv: position adaptive convolution with dynamic kernel assembling on point clouds[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2021: 3173-3182. | 
																													
																						| 17 | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2016: 770-778. | 
																													
																						| 18 | QIN Z, YU H, WANG C, et al. Geometric Transformer for fast and robust point cloud registration[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2022: 11143-11152. | 
																													
																						| 19 |  | 
																													
																						| 20 | XIA Z F, PAN X R, SONG S J, et al. Vision Transformer with deformable attention[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2022: 4794-4803. | 
																													
																						| 21 | LIU Z, HU H, LIN Y T, et al. Swin Transformer V2: scaling up capacity and resolution[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2022: 12009-12019. | 
																													
																						| 22 | LI J X, LEE G H. USIP: unsupervised stable interest point detection from 3D point clouds[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2019: 361-370. | 
																													
																						| 23 | LI J X, CHEN B M, LEE G H. SO-Net: self-organizing network for point cloud analysis[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 9397-9406. | 
																													
																						| 24 | YANG Y Q, FENG C, SHEN Y R, et al. FoldingNet: point cloud auto-encoder via deep grid deformation[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 206-215. | 
																													
																						| 25 | YEW Z J, LEE G H. REGTR: end-to-end point cloud correspondences with transformers[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2022: 6677-6686. | 
																													
																						| 26 | WANG N. The use of bilinear interpolation filter to remove image noise. Journal of Physics: Conference Series, 2022, 2303(1): 012089.  doi: 10.1088/1742-6596/2303/1/012089
 | 
																													
																						| 27 | CHEN Z L, CHEN H H, GONG L N, et al. UTOPIC: uncertainty-aware overlap prediction network for partial point cloud registration. Computer Graphics Forum, 2022, 41(7): 87- 98.  doi: 10.1111/cgf.14659
 | 
																													
																						| 28 | LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of IEEE International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2017: 2980-2988. | 
																													
																						| 29 | YU H, LI F, SALEH M, et al. CoFiNet: Reliable coarse-to-fine correspondences for robust pointcloud registration[EB/OL]. [2023-04-11]. https://arxiv.org/abs/2110.14076 . | 
																													
																						| 30 | WANG Y, SOLOMON J. Deep closest point: learning representations for point cloud registration[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2019: 3523-3532. | 
																													
																						| 31 | YEW Z J, LEE G H. RPM-Net: robust point matching using learned features[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 11824-11833. |