参考文献
[1]张宾,杨家海,吴建平.Internet流量模型分析与评述[J].软件学报,2011,22(1):115-131.
[2]杨新宇,杨树森,李娟.基于非线性预处理网络流量预测方法的泛洪型DDoS攻击检测算法[J].计算机学报,2011,34(2):395-405.
[3]李捷,刘瑞新,刘先省,等.一种基于混合模型的实时网络流量预测算法[J].计算机研究与发展,2006,43(5):806-812.
[4]Zhang Yanru,Zhang Yunlong,Haghani Ali.A Hybrid Short-term Traffic Flow Forecasting Method Based on Spectral Analysis and Statistical Volatility Model[J].Transportation Research Part C Emerging Technologies,2014,43(1):65-78.
[5]Toro C H F,Meire S G,Gálvez J F,et al.A Hybrid Artificial Intelligence Model for River Flow Forecast-ing[J].Applied Soft Computing,2013,13(8):3449-3458.
(下转第139页)
(上接第134页)
[6]Hong Wei-Chiang,Dong Yucheng,Zheng Feifeng,et al.Hybrid Evolutionary Algorithms in a SVR Traffic Flow Forecasting Model[J].Applied Mathematics & Com-putation,2011,217(15):6733-6747.
[7]温祥西,孟相如,马志强,等.小时间尺度网络流量混沌性分析及趋势预测[J].电子学报,2012,40(8):1609-1616.
[8]董梦丽,杨庚,曹晓梅.网络流量预测方法[J].计算机工程,2011,37(16):98-100.
[9]Lippi M,Bertini M,Frasconi P.Short-term Traffic Flow Forecasting:An Experimental Comparison of Time-series Analysis and Supervised Learning[J].IEEE Transac-tions on Intelligent Transportation Systems,2013,14(2):871-882.
[10]Yu Yanhua,Wang Jun,Song Meina,et al.Network Traffic Prediction and Result Analysis Based on Seasonal ARIMA and Correlation Coefficient[C]//Proceedings of the 4th International Conference on Intelligent Systems Design &
Engineering Applications.Washington D.C.,USA:IEEE Press,2010:980-983.
[11]王鸣,孙奕鸣.小波支持向量机的网络流量预测研究[J].计算机仿真,2012,29(11):198-201.
[12]陈晓天,刘静娴.改进的基于小波变换和FARIMA模型的网络流量预测算法[J].通信学报,2011,32(4):153-157.
[13]张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-42.
[14]党小超,阎林.基于短相关ARIMA模型的网络流量预测[J].计算机工程,2012,38(13):71-74.
编辑顾逸斐 |