作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2021, Vol. 47 ›› Issue (5): 292-300. doi: 10.19678/j.issn.1000-3428.0057142

• 开发研究与工程应用 • 上一篇    下一篇

基于网络流量预测的DASH系统优化

耿俊杰1, 李晓明2, 颜金尧1   

  1. 1. 中国传媒大学 协同创新中心, 北京 100024;
    2. 北京华宇信息技术有限公司, 北京 100024
  • 收稿日期:2020-01-07 修回日期:2020-03-24 发布日期:2020-05-20
  • 作者简介:耿俊杰(1987-),男,博士研究生,主研方向为融媒体网络技术;李晓明,博士;颜金尧,教授、博士、博士生导师。
  • 基金资助:
    国家自然科学基金(61971382);国家重点研发计划(2019YFB1804300)。

Optimization of DASH System Based on Network Traffic Prediction

GENG Junjie1, LI Xiaoming2, YAN Jinyao1   

  1. 1. Collaborative Innovation Center, Communication University of China, Beijing 100024, China;
    2. Beijing Thunisoft Information Technology Co., Ltd., Beijing 100024, China
  • Received:2020-01-07 Revised:2020-03-24 Published:2020-05-20

摘要: 近年来基于超文本传输协议(HTTP)的自适应视频流量大幅上升,传统HTTP动态自适应流(DASH)速率算法无法准确预测网络吞吐量,导致网络带宽波动,使传输控制协议慢启动并触发抛弃规则,从而降低视频质量。提出一种基于网络流量预测的改进DASH速率算法。将DASH算法分为视频质量选择阶段、视频下载阶段和请求等待阶段,在视频质量选择阶段引入支持向量回归模型和长短期记忆网络预测网络吞吐量,结合缓冲时长选择更优质量的视频片段,在视频下载阶段通过预测实时吞吐量降低触发抛弃规则的次数。仿真结果表明,该算法可自适应流速率并减少抛弃规则的命中次数,有效提高视频体验质量。

关键词: 基于HTTP的动态自适应流, 体验质量, 吞吐量预测, 支持向量回归模型, 长短期记忆网络

Abstract: In recent years,the adaptive video traffic based on Hyper Text Transfer Protocol(HTTP) has increased greatly.The traditional Dynamic Adaptive Streaming over HTTP(DASH) rate algorithm can no longer accurately predict the network throughput,giving rise to the fluctuations of network bandwidth.The fluctuations cause the transmission control protocol slow to start and thus trigger the discarding rules,leading to a decrease in the video quality.This paper proposes an improved DASH rate algorithm based on network traffic prediction.The DASH algorithm is divided into video quality selection stage,video downloading stage and request waiting stage.In the video quality selection stage,the Support Vector Regression(SVR) model and the Long Short-Term Memory(LSTM) network are introduced to predict the network throughput.In addition,the buffer duration is used to select the better quality video clips.In the video downloading stage,the real-time throughput is predicted to reduce the number of times the discarding rules are triggered. Simulation results show that the proposed algorithm can adapt to the streaming rate and reduce the hit times of discarding rules,effectively improving the Quality of Experience(QoE) for video.

Key words: Dynamic Adaptive Streaming over HTTP(DASH), Quality of Experience(QoE), throughput prediction, Support Vector Regression(SVR) model, Long Short-Term Memory(LSTM) network

中图分类号: