[1] 中国气象局.中华人民共和国气象行业标准:能见度等级和预报:QX/T 114-2010[S].北京:气象出版社,2010:1-3. [2] 苗苗.视频能见度检测算法综述[J].现代电子技术,2012,35(15):72-75. [3] 孙学金.大气探测学[M].北京:气象出版社,2009. [4] 李志乾,张志伟,成文,等.海上能见度观测研究进展[J].自动化仪表,2015,36(10):33-36. [5] HAUTIÉRE N,BABARI R,DUMONT É,et al.Estimating meteorological visibility using cameras:a probabilistic model-driven approach[C]//Proceedings of Asian Conference on Computer Vision.Berlin,Germany:Springer,2010:243-254. [6] 宋洪军,郜园园,陈阳舟.基于摄像机动态标定的交通能见度估计[J].计算机学报,2015,38(6):1172-1187. [7] 胡平,杨旭东.高速公路能见度快速检测算法[J].公路交通科技,2017,34(4):115-122. [8] XIANG Wenshu,XIAO Jianli,WANG Chongjing,et al.A new model for daytime visibility index estimation fused average sobel gradient and dark channel ratio[C]//Proceedings of International Conference on Computer Science and Network Technology.Washington D.C.,USA:IEEE Press,2014:109-112. [9] 安明伟,陈启美,郭宗良.基于路况视频的气象能见度检测方法与系统设计[J].仪器仪表学报,2010,31(5):1148-1153. [10] 许茜,殷绪成,李岩,等.基于图像理解的能见度测量方法[J].模式识别与人工智能,2013,26(6):543-551. [11] 钟丽,吴关胜,谢斌,等.基于图像分析的航道能见度评估算法研究[J].交通科技,2017(2):151-154. [12] 花毓幸,曾燕,邱新法.基于图像兴趣窗格测算大气能见度的方法研究[J].科技通报,2017,33(8):39-42. [13] SIMONYAN K,ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[EB/OL].[2018-06-01].https://www.arxiv-vanity.com/papers/1409.1556/. [14] BOSSE S,MANIRY D,MULLER K R,et al.Deep neural networks for no-reference and full-reference image quality assessment[J].IEEE Transactions on Image Processing,2018,27(1):206-219. [15] LIN Kwan Yee,WANG Guangxiang.Hallucinated-IQA:no-reference image quality assessment via adversarial learning[EB/OL].[2018-06-01].https://arxiv.org/pdf/1804.01681.pdf. [16] DRUCKER H,BURGES C J C,KAUFMAN L,et al.Support vector regression machines[EB/OL].[2018-06-01].http://papers.nips.cc/paper/1238-support-vector-regression-machines.pdf. [17] SMOLA A J.A tutorial on support vector regression[M].[S.l.]:Kluwer Academic Publishers,2004. [18] EIGENSATZ M,PAULY M.Insights into the geometry of the gaussian kernel and an application in geometric modeling[EB/OL].[2018-06-01].https://lgg.epfl.ch/publications/2006/eigensatz_2006_IGG.pdf. [19] GAO Junbin,GUNN S R,HARRIS C J,et al.A probabilistic framework for SVM regression and error bar estimation[J].Machine Learning,2002,46(1/2/3):71-89. |