[1] LIU S Y, LIU S, TIAN Y, et al.Research on forecast of rail traffic flow based on ARIMA model[J].Journal of Physics:Conference Series, 2021, 1792(1):12065-12066. [2] CHENG T, WANG J Q, HAWORTH J, et al.A dynamic spatial weight matrix and localized space-time autoregressive integrated moving average for network modeling[J].Geographical Analysis, 2014, 46(1):75-97. [3] MILENKOVIĆ M, ŠVADLENKA L, MELICHAR V, et al.SARIMA modelling approach for railway passenger flow forecasting[EB/OL].[2021-02-29].https://www.researchgate.net/publication/292088237_SARIMA_modelling_approach_for_railway_passenger_flow_forecasting. [4] SMITH B L, WILLIAMS B M, OSWALD R K.Comparison of parametric and nonparametric models for traffic flow forecasting[J].Transportation Research Part C:Emerging Technologies, 2002, 10(4):303-321. [5] LIANG S D, MA M H, HE S X, et al.Short-term passenger flow prediction in urban public transport:Kalman filtering combined K-nearest neighbor approach[J].IEEE Access, 2019, 7:120937-120949. [6] ZHANG Y, LIU Y C.Traffic forecasting using least squares support vector machines[J].Transportmetrica, 2009, 5(3):193-213. [7] LI W, SUI L Y, ZHOU M, et al.Short-term passenger flow forecast for urban rail transit based on multi-source data[EB/OL].[2021-02-29].https://link.springer.com/article/10.1186/s13638-020-01881-4. [8] ROOS J, BONNEVAY S, GAVIN G.Short-term urban rail passenger flow forecasting:a dynamic Bayesian network approach[C]//Proceedings of the 15th IEEE International Conference on Machine Learning and Applications.Washington D.C., USA:IEEE Press, 2016:1034-1039. [9] ZHANG S Y, LIU Z K, SHEN F T, et al.A prediction model of buses passenger flow based on neural networks[J].Journal of Physics:Conference Series, 2020, 1656(1):12-20. [10] LIU L J, CHEN R C, ZHAO Q F, et al.Applying a multistage of input feature combination to random forest for improving MRT passenger flow prediction[J].Journal of Ambient Intelligence and Humanized Computing, 2019, 10(11):4515-4532. [11] ZHAO Z, CHEN W H, WU X M, et al.LSTM network:a deep learning approach for short-term traffic forecast[J].IET Intelligent Transport Systems, 2017, 11(2):68-75. [12] 李月龙, 唐德华, 姜桂圆, 等.基于维度加权的残差LSTM短期交通流量预测[J].计算机工程, 2019, 45(6):1-5. LI Y L, TANG D H, JIANG G Y, et al.Short term traffic flow forecasting based on dimension weighted residual LSTM[J].Computer Engineering, 2019, 45(6):1-5.(in Chinese) [13] ZHANG D, KABUKA M R.Combining weather condition data to predict traffic flow:a GRU-based deep learning approach[J].IET Intelligent Transport Systems, 2018, 12(7):578-585. [14] ZHANG J B, ZHENG Y, QI D K, et al.DNN-based prediction model for spatio-temporal data[C]//Proceedings of the 24th ACM Sigspatial International Conference on Advances in Geographic Information Systems.New York, USA:ACM Press, 2016:92-95. [15] 赵建立, 石敬诗, 孙秋霞, 等.基于混合深度学习的地铁站进出客流量短时预测[J].交通运输系统工程与信息, 2020, 20(5):128-134. ZHAO J L, SHI J S, SUN Q X, et al.Short-time inflow and outflow prediction of metro stations based on hybrid deep learning[J].Journal of Transportation Systems Engineering and Information Technology, 2020, 20(5):128-134.(in Chinese) [16] ZHANG J L, CHEN F, SHEN Q.Cluster-based LSTM network for short-term passenger flow forecasting in urban rail transit[J].IEEE Access, 2019, 7:147653-147671. [17] 王祥雪, 许伦辉.基于深度学习的短时交通流预测研究[J].交通运输系统工程与信息, 2018, 18(1):81-88. WANG X X, XU L H.Short-term traffic flow prediction based on deep learning[J].Journal of Transportation Systems Engineering and Information Technology, 2018, 18(1):81-88.(in Chinese) [18] YU D, LIU Y, YU X.A data grouping CNN algorithm for short-term traffic flow forecasting[C]//Proceedings of International Asia-Pacific Web Conference.Berlin, Germany:Springer, 2016:92-103. [19] YU F, WEI D, ZHANG S T, et al.3D CNN-based accurate prediction for large-scale traffic flow[C]//Proceedings of the 4th International Conference on Intelligent Transportation Engineering.Washington D.C., USA:IEEE Press, 2019:99-103. [20] LI Y.The combination of CNN, RNN, and DNN for relation extraction[C]//Proceedings of the 2nd International Conference on Computing and Data Science.Washington D.C., USA:IEEE Press, 2021:105-114. [21] ZHANG J B, ZHENG Y Z, QI D K.Deep spatio-temporal residual networks for citywide crowd flows prediction[C]//Proceedings of the 31th AAAI Conference on Artificial Intelligence.San Francisco, USA:AAAI Press, 2016:1655-1661. [22] OBER P B.Introduction to linear regression analysis[J].Journal of Applied Statistics, 2013, 40(11/12):2775-2776. [23] SAUNDERS C, STITSON M O, WESTON J, et al.Support vector machine[J].Computer Science, 2002, 1(4):1-28. [24] MA X L, DAI Z, HE Z B, et al.Learning traffic as images:a deep convolutional neural network for large-scale transportation network speed prediction[J].Sensors, 2017, 17(4):818. [25] CHO K, VAN MERRIENBOER B, GULCEHRE C, et al.Learning phrase representations using RNN encoder-decoder for statistical machine translation[C]//Proceedings of 2014 Conference on Empirical Methods in Natural Language Processing.Stroudsburg, USA:Association for Computational Linguistics, 2014:1724-1734. |