作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程

• 开发研究与工程应用 • 上一篇    下一篇

基于强空间集成的交通状态判别方法

刘擎超,蔡英凤,江浩斌,何友国,陈龙   

  1. (江苏大学 汽车工程研究院,江苏 镇江 212013)
  • 收稿日期:2017-04-17 出版日期:2017-11-15 发布日期:2017-11-15
  • 作者简介:刘擎超(1987—),男,讲师、博士,主研方向为智能交通;蔡英风,副教授、博士;江浩斌,教授、博士;何友国,副教授、博士;陈龙,教授、博士。
  • 基金资助:
    国家自然科学基金(U1564201,61601203,61403172);江苏省道路载运工具新技术应用重点实验室开放基金(BM20082061503);江苏大学高级人才科研启动基金(16JDG046)。

Automatic Condition Identification Method Based on Strong Space Integration

LIU Qingchao,CAI Yingfeng,JIANG Haobin,HE Youguo,CHEN Long   

  1. (Automotive Engineering Research Institute,Jiangsu University,Zhenjiang,Jiangsu 212013,China)
  • Received:2017-04-17 Online:2017-11-15 Published:2017-11-15

摘要: 为研究服务于交通诱导的路网宏观交通状态判别模型,依据集成学习理论,基于强空间集成,提出一种交通状态判别方法。采用K-近邻规则寻找与待判别交通流数据相似的一组训练样本,构成待判别数据的邻域,挖掘交通状态学习器的强空间,进而输出交通运行状态等级标签。采用交通状态混淆矩阵,查全率、查准率等进行实验,结果表明该方法能够较准确地判断路网交通状态,满足交通状态判别的实际应用。

关键词: 智能交通, 交通状态判别, 强空间, 混淆矩阵, 学习器

Abstract: In order to research the road network macroscopic automatic condition identification model which is used in traffic guidance,according to the ensemble learning theory,this paper proposes an automatic condition identification method based on strong space integration.It uses K-nearest neighbor rule to find a set of training samples similar to the traffic data to be discriminated,the neighborhood of the data to be discriminated,and excavates the strong space of the automatic condition learner,then outputs the automatic condition level label.Automatic condition confusion matrix,recall rate and precision rate are used in the experiment.Experimental results show that this model can accurately identify the automatic condition of the road network and meet the practical application of the automatic condition identification.

Key words: intelligent transportation, automatic condition identification, strong space, confusion matrix, learner

中图分类号: