参考文献
[1]张玉洁,吕相文,张云洲.GPU虚拟化环境下的数据通信策略研究[J].计算机技术与发展,2015,25(8):24-28.
[2]SHI L,CHEN H,SUN J,et al.vCUDA:GPU-accelerated High-performance Computing in Virtual Machines[J].IEEE Transactions on Computers,2012,61(6):804-816.
[3]DUATO J,PENA A J,SILLA F,et al.rCUDA:Reducing the Number of GPU-based Accelerators in High Performance Clusters[C]//Proceedings of 2010 IEEE International Conference on High Performance Computing and Simulation.Washington D.C.,USA:IEEE Press,2010:224-231.
[4]杨经纬,马凯,龙翔.面向集群环境的虚拟化GPU计算平台[J].北京航空航天大学学报,2016,42(11):2340-2348.
[5]盛冲冲,胡新明,李佳佳,等.面向节点异构 GPU 集群的编程框架[J].计算机工程,2015,41(2):292-297.
[6]HINTON G E,SALAKHUTDINOV R R.Reducing the Dimensionality of Data with Neural Networks[J].Science,2006,313(5786):504-507.
[7]DEAN J,CORRADO G,MONGA R,et al.Large Scale Distributed Deep Networks[C]//Proceedings of IEEE ANIPS’12.Washington D.C.,USA:IEEE Press,2012:1223-1231.
[8]ZOU Y,JIN X,LI Y,et al.Mariana:Tencent Deep Learning Platform and Its Applications[J].Proceedings of the VLDB Endowment,2014,7(13):1772-1777.
(下转第83页)
(上接第74页)
[9]YADAN O,ADAMS K,TAIGMAN Y,et al.Multi-gpu Training of Convnets[EB/OL].(2013-05-23).https://wenku.baidu.com/view/c2121ee0aaea998fcd220e95.html.
[10]POVEY D,ZHANG X,KHUDANPUR S.Parallel Training of DNNs with Natural Gradient and Parameter Averaging[EB/OL].(2014-05-21).http://www.itsoc.org/publications/arxiv/arxiv-faq.
[11]SOUROURI M,GILLBERG T,BADEN S B,et al.Effective Multi-GPU Communication Using Multiple CUDA Streams and Threads[C]//Proceedings of the 20th IEEE International Conference on Parallel and Distributed Systems.Washington D.C.,USA:IEEE Press,2014:981-986.
[12]王刚,唐杰,武港山.基于多 GPU 集群的编程框架[J].计算机技术与发展,2014,24(1):9-13.
[13]闵芳,张志先,张玉洁.虚拟化环境下多 GPU 并行计算研究[J].微电子学与计算机,2016,33(3):69-75.
[14]张玉洁.基于多 GPGPU 并行计算的虚拟化技术研究[D].南京:南京航空航天大学,2015.
[15]ELLIOTT G A,WARD B C,ANDERSON J H.GPUSync:A Framework for Real-time GPU Management[C]//Proceed-ings of RTSS’13.Washington D.C.,USA:IEEE Press,2013:33-44.
[16]STUART J A,OWENS J D.Multi-GPU MapReduce on GPU Clusters[C]//Proceedings of IEEE International on Parallel & Distributed Processing Symposium.Washington D.C.,USA:IEEE Press,2011:1068-1079.
编辑索书志 |