[1] PENG C, XIAO W, JIAN P, et al.A survey on network embedding[J].IEEE Transactions on Knowledge and Data Engineering, 2018, 31(5):833-852. [2] BENSON A R, GLEICH D F, LESKOVEC J.Higher-order organization of complex networks[J].Science, 2016, 353(6295):163-166. [3] CAI H, ZHENG V W, CHANG K C C.A comprehensive survey of graph embedding:problems, techniques, and applications[J].IEEE Transactions on Knowledge and Data Engineering, 2018, 30(9):1616-1637. [4] 涂存超, 杨成, 刘知远, 等.网络表示学习综述[J].中国科学:信息科学, 2017, 47(8):980-996. TU C, YANG C, LIU Z, et al.Network representation learning:an overview[J].SCIENTIA SINCA Informationic, 2017, 47(8):980-996.(in Chinese) [5] 陈维政, 张岩, 李晓明.网络表示学习[J].大数据, 2015, 1(3):8-22. CHEN W, ZHANG Y, LI X.Network representation learning[J].Big Data, 2015, 1(3):8-22.(in Chinese) [6] BHAGAT S, CORMODE G, MUTHUKRISHNAN S.Node classification in social networks[M].Berlin, Germany:Springer, 2011. [7] LÜ L, ZHOU T.Link prediction in complex networks:a survey[J].Physica A:Statistical Mechanics and Its Applications, 2011, 390(6):1150-1170. [8] FORTUNATO S.Community detection in graphs[J].Physics Reports, 2010, 486(3/4/5):75-174. [9] MAATEN L, HINTON G.Visualizing data using t-SNE[J].Journal of Machine Learning Research, 2008, 9:2579-2605. [10] CHEN J, WU Y, FAN L, et al.N2VSCDNNR:a local recommender system based on Node2vec and rich information network[J].IEEE Transactions on Computational Social Systems, 2019, 6(3):456-466. [11] ROWEIS S T, SAUL L K.Nonlinear dimensionality reduction by locally linear embedding[J].Science, 2000, 290(5500):2323-2326. [12] BELKIN M, NIYOGI P.Laplacian eigenmaps and spectral techniques for embedding and clustering[C]//Proceedings of Advances in Neural Information Processing Systems.Cambridge, USA:MIT Press, 2001:585-591. [13] CAO S, LU W, XU Q.GraRep:learning graph representations with global structural information[C]//Proceedings of the 24th ACM International Conference on Information and Knowledge Management.New York, USA:ACM Press, 2015:891-900. [14] OU M, CUI P, PEI J, et al.Asymmetric transitivity preserving graph embedding[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York, USA:ACM Press, 2016:1105-1114. [15] YANG C, SUN M, LIU Z, et al.Fast network embedding enhancement via high order proximity approximation[C]//Proceedings of International Joint Conference on Artificial Intelligence.Palo Alto, USA:AAAI Press, 2017:3894-3900. [16] PEROZZI B, AL-RFOU R, SKIENA S.DeepWalk:online learning of social representations[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York, USA:ACM Press, 2014:701-710. [17] GROVER A, LESKOVEC J.Node2vec:scalable feature learning for networks[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York, USA:ACM Press, 2016:855-864. [18] TANG J, QU M, WANG M, et al.LINE:large-scale information network embedding[C]//Proceedings of the 24th International Conference on World Wide Web.New York, USA:ACM Press, 2015:1067-1077. [19] WANG D, CUI P, ZHU W.Structural deep network embedding[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York, USA:ACM Press, 2016:1225-1234. [20] CAO S, LU W, XU Q.Deep neural networks for learning graph representations[C]//Proceedings of the 30th AAAI Conference on Artificial Intelligence.Palo Alto, USA:AAAI Press, 2016:1145-1152. [21] GIRVAN M, NEWMAN M E J.Community structure in social and biological networks[J].PNAS, 2001, 99:7821-7826. [22] CHERIFI H, PALLA G, SZYMANSKI B, et al.On community structure in complex networks:challenges and opportunities[J].Applied Network Science, 2019, 4:1-5. [23] NEWMAN M E J.Finding community structure in networks using the eigenvectors of matrices[J].Physical Review E, 2006, 74(3):1-5. [24] TU K, CUI P, WANG X, et al.Structural deep embedding for hyper-networks[C]//Proceedings of the 32nd AAAI Conference on Artificial Intelligence.Palo Alto, USA:AAAI Press, 2018:426-433. [25] LI Y, SHA C, HUANG X, et al.Community detection in attributed graphs:an embedding approach[C]//Proceedings of the 32nd AAAI Conference on Artificial Intelligence.Palo Alto, USA:AAAI Press, 2018:1-5. [26] LEVY O, GOLDBERG Y.Neural word embedding as implicit matrix factorization[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems.New York, USA:ACM Press, 2014:2177-2185. [27] LEE D D, SEUNG H S.Algorithms for non-negative matrix factorization[C]//Proceedings of the 13th International Conference on Neural Information Processing Systems.New York, USA:ACM Press, 2000:535-541. [28] Karate[EB/OL].[2020-08-10].http://networkrepository.com/soc-karate.php. [29] WebKB[EB/OL].[2020-08-10].http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www/data/. [30] ZACHARY W.An information flow model for conflict and fission in small groups[J].Journal of Anthropological Research, 1977, 33(4):452-473. [31] CRAVEN M, DIPASQUO D, FREITAG D, et al.Learning to extract symbolic knowledge from the World Wide Web[C]//Proceedings of the 15th AAAI Conference on Artificial Intelligence.Palo Alto, USA:AAAI Press, 1998:1134-1142. |