| [1] LIANG Y, GUO Y G, GONG Y X, et al.An isolated data island benchmark suite for federated learning[EB/OL].[2022-02-01].https://arxiv.org/abs/2008.07257. [2] YANG Q, LIU Y, CHEN T J, et al.Federated machine learning:concept and applications[J].ACM Transactions on Intelligent Systems and Technology, 2019, 10(2):12.
 [3] LIM W Y B, LUONG N C, HOANG D T, et al.Federated learning in mobile edge networks:a comprehensive survey[J].IEEE Communications Surveys & Tutorials, 2020, 22(3):2031-2063.
 [4] GOODFELLOW I J, SHLENS J, SZEGEDY C.Explaining and harnessing adversarial examples[EB/OL].[2022-02-01].https://arxivpreprintarxiv:1412.6572.
 [5] XIAO H, BIGGIO B, BROWN G, et al.Is feature selection secure against training data poisoning?[C]//Proceedings of IEEE International Conference on Machine Learning.Washington D.C., USA:IEEE Press, 2015:1689-1698.
 [6] SHOKRI R, STRONATI M, SONG C Z, et al.Membership inference attacks against machine learning models[C]//Proceedings of IEEE Symposium on Security and Privacy.Washington D.C., USA:IEEE Press, 2017:3-18.
 [7] POKHREL S R, CHOI J.Federated learning with blockchain for autonomous vehicles:analysis and design challenges[J].IEEE Transactions on Communications, 2020, 68(8):4734-4746.
 [8] ZHANG C, XIE Y, BAI H, et al.A survey on federated learning[J].Knowledge-Based Systems, 2021, 216:106775.
 [9] MOTHUKURI V, PARIZI R M, POURIYEH S, et al.A survey on security and privacy of federated learning[J].Future Generation Computer Systems, 2021, 115:619-640.
 [10] MCMAHAN B, MOORE E, RAMAGE D, et al.Communication-efficient learning of deep networks from decentralized data[C]//Proceedings of PMLR'17.Washington D.C., USA:IEEE Press, 2017:1273-1282.
 [11] 张亮, 刘百祥, 张如意, 等.区块链技术综述[J].计算机工程, 2019, 45(5):1-12. ZHANG L, LIU B X, ZHANG R Y, et al.Overview of blockchain technology[J].Computer Engineering, 2019, 45(5):1-12.(in Chinese)
 [12] HAKAK S, KHAN W Z, GILKAR G A, et al.Securing smart cities through blockchain technology:architecture, requirements, and challenges[J].IEEE Network, 2020, 34(1):8-14.
 [13] FAROUK A, ALAHMADI A, GHOSE S, et al.Blockchain platform for industrial healthcare:vision and future opportunities[J].Computer Communications, 2020, 154:223-235.
 [14] LU Y L, HUANG X H, DAI Y Y, et al.Blockchain and federated learning for privacy-preserved data sharing in industrial IoT[J].IEEE Transactions on Industrial Informatics, 2020, 16(6):4177-4186.
 [15] QU Y Y, GAO L X, LUAN T H, et al.Decentralized privacy using blockchain-enabled federated learning in fog computing[J].IEEE Internet of Things Journal, 2020, 7(6):5171-5183.
 [16] WENG J S, WENG J, ZHANG J L, et al.DeepChain:auditable and privacy-preserving deep learning with blockchain-based incentive[J].IEEE Transactions on Dependable and Secure Computing, 2021, 18(5):2438-2455.
 [17] SHARMA P K, PARK J H, CHO K.Blockchain and federated learning-based distributed computing defence framework for sustainable society[J].Sustainable Cities and Society, 2020, 59:102220.
 [18] ZHAO W J.Blockchain technology:development and prospects[J].National Science Review, 2019, 6(2):369-373.
 [19] XIE C, KOYEJO S, GUPTA I.Asynchronous federated optimization[EB/OL].[2022-02-01].https://arxiv.org/abs/1903.03934.
 [20] JIANG Y H, KONEČNÝ J, RUSH K, et al.Improving federated learning personalization via model agnostic meta learning[EB/OL].[2022-02-01].https://arxiv.org/abs/1909.12488.
 [21] LI T, SAHU A K, ZAHEER M, et al.Federated optimization in heterogeneous networks[C]//Proceedings of IEEE Symposium on Machine Learning and Systems.Washington D.C., USA:IEEE Press, 2020:429-450.
 [22] ZHANG M, SAPRA K, FIDLER S, et al.Personalized federated learning with first order model optimization[EB/OL].[2022-02-01].https://arxiv.org/abs/2012.08565.
 [23] GAO S, YU T Y, ZHU J M, et al.T-PBFT:an EigenTrust-based practical Byzantine fault tolerance consensus algorithm[J].China Communications, 2019, 16(12):111-123.
 [24] 孙嘉豪, 孟翔斯, 张浩运, 等.基于改进PBFT的区块链知识产权保护模型[J].计算机工程, 2020, 46(12):134-141. SUN J H, MENG X S, ZHANG H Y, et al.Intellectual property protection model using blockchain based on improved PBFT[J].Computer Engineering, 2020, 46(12):134-141.(in Chinese)
 [25] KIM H, PARK J, BENNIS M, et al.Blockchained on-device federated learning[J].IEEE Communications Letters, 2020, 24(6):1279-1283.
 [26] 谭敏生, 杨杰, 丁琳, 等.区块链共识机制综述[J].计算机工程, 2020, 46(12):1-11. TAN M S, YANG J, DING L, et al.Review of consensus mechanism of blockchain[J].Computer Engineering, 2020, 46(12):1-11.(in Chinese)
 [27] 王兵, 李辉灵, 牛新征.基于综合选举的DPoS共识算法[J].计算机工程, 2022, 48(6):50-56. WANG B, LI H L, NIU X Z.DPoS consensus algorithm with comprehensive election[J].Computer Engineering, 2022, 48(6):50-56.(in Chinese)
 [28] NGUYEN T, KIM K.A survey about consensus algorithms used in Blockchain[J].Journal of Information Processing Systems, 2018, 14(1):101-128.
 [29] MIKAVICA B, KOSTIĆ-LJUBISAVLJEVIĆ A.Blockchain-based solutions for security, privacy, and trust management in vehicular networks:a survey[J].The Journal of Supercomputing, 2021, 77(9):9520-9575.
 |