[1] BORDES A, USUNIER N, GARCIA-DURÁN A, et al.Translating embeddings for modeling multi-relational data[C]//Proceedings of the 26th International Conference on Neural Information Processing Systems.Washington D.C., USA:IEEE Press, 2013:2787-2795. [2] WANG Z, ZHANG J, FENG J, et al.Knowledge graph embedding by translating on hyperplanes[C]//Proceedings of the 28th AAAI Conference on Artificial Intelligence.[S.l.]:AAAI Press, 2014:1112-1119. [3] LIN Y, LIU Z, SUN M, et al.Learning entity and relation embeddings for knowledge graph completion[C]//Proceedings of the 29th AAAI Conference on Artificial Intelligence.[S.l.]:AAAI Press, 2015:2181-2187. [4] DETTMERS T, MINERVINI P, STENETORP P, et al.Convolutional 2D knowledge graph embeddings[C]//Proceedings of the 32nd AAAI Conference on Artificial Intelligence.[S.l.]:AAAI Press, 2018:1811-1818. [5] MALLEA M D G, MELTZER P, BENTLEY P J.Capsule neural networks for graph classification using explicit tensorial graph representations[EB/OL].[2021-06-05].https://arxiv.org/abs/1902.08399. [6] LIU W J, ZHOU P, ZHAO Z, et al.K-BERT:enabling language representation with knowledge graph[J].Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(3):2901-2908. [7] DONG L, WEI F R, ZHOU M, et al.Question answering over freebase with multi-column convolutional neural networks[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing.[S.l.]:Association for Computational Linguistics, 2015:260-269. [8] YIH W T, CHANG M W, HE X D, et al.Semantic parsing via staged query graph generation:question answering with knowledge base[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing.[S.l.]:Association for Computational Linguistics, 2015:1321-1331. [9] 陈文杰, 文奕, 张鑫, 等.一种改进的基于TransE知识图谱表示方法[J].计算机工程, 2020, 46(5):63-69, 77. CHEN W J, WEN Y, ZHANG X, et al.An improved TransE-based method for knowledge graph representation[J].Computer Engineering, 2020, 46(5):63-69, 77.(in Chinese) [10] DAI Z H, LI L, XU W.CFO:conditional focused neural question answering with large-scale knowledge bases[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics.[S.l.]:Association for Computational Linguistics, 2016:800-810. [11] SUN H T, BEDRAX-WEISS T, COHEN W.PullNet:open domain question answering with iterative retrieval on knowledge bases and text[C]//Proceedings of 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing.[S.l.]:Association for Computational Linguistics, 2019:2380-2390. [12] LAN Y S, JIANG J.Query graph generation for answering multi-hop complex questions from knowledge bases[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics.[S.l.]:Association for Computational Linguistics, 2020:969-974. [13] SAXENA A, TRIPATHI A, TALUKDAR P.Improving multi-hop question answering over knowledge graphs using knowledge base embeddings[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics.[S.l.]:Association for Computational Linguistics, 2020:4498-4507. [14] 金婧, 万怀宇, 林友芳.融合实体类别信息的知识图谱表示学习[J].计算机工程, 2021, 47(4):77-83. JIN J, WAN H Y, LIN Y F.Knowledge graph representation learning fused with entity category information[J].Computer Engineering, 2021, 47(4):77-83.(in Chinese) [15] MIKOLOV T, CHEN K, CORRADO G, et al.Efficient estimation of word representations in vector space[EB/OL].[2021-06-05].https://openreview.net/pdf?id=idpCdOWtqXd60. [16] TROUILLON T, WELBL J, RIEDEL S, et al.Complex embeddings for simple link prediction[C]//Proceedings of the 33rd International Conference on Machine Learning.New York, USA:ACM Press, 2016:2071-2080. [17] SUN Z, DENG Z H, NIE J Y, et al.RotatE:knowledge graph embedding by relational rotation in complex space[EB/OL].[2021-06-05].https://openreview.net/pdf?id=HkgEQnRqYQ. [18] WANG B, ZHAO D, LIOMA C, et al.Encoding word order in complex embeddings[EB/OL].[2021-06-05].https://openreview.net/pdf?id=Hke-WTVtwr. [19] SANTORO A, FAULKNER R, RAPOSO D, et al.Relational recurrent neural networks[C]//Proceedings of the 32nd International Conference on Neural Information Processing Systems.[S.l.]:Curran Associates Inc., 2018:7310-7321. [20] VASWANI A, SHAZEER N, PARMAR N, et al.Attention is all you need[EB/OL].[2021-06-05].https://papers.nips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf. [21] VEIT A, WILBER M, BELONGIE S.Residual networks behave like ensembles of relatively shallow networks[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems.Washington D.C., USA:IEEE Press, 2016:550-558. [22] GLOROT X, BENGIO Y.Understanding the difficulty of training deep feedforward neural networks[C]//Proceedings of the 13th International Conference on Artificial Intelligence and Statistics.Washington D.C., USA:IEEE Press, 2010:249-256. [23] LIU Y H, OTT M, GOYAL N, et al.RoBERTa:a robustly optimized BERT pretraining approach[EB/OL].[2021-06-05].https://arxiv.org/abs/1907.11692. [24] BORDES A, WESTON J, COLLOBERT R, et al.Learning structured embeddings of knowledge bases[C]//Proceedings of the 25th AAAI Conference on Artificial Intelligence.[S.l.]:AAAI Press, 2011:301-306. [25] ZHANG Y Y, DAI H J, KOZAREVA Z, et al.Variational reasoning for question answering with knowledge graph[EB/OL].[2021-06-05].https://arxiv.org/abs/1709.04071. [26] KINGMA D P, BA J.Adam:a method for stochastic optimization[EB/OL].[2021-06-05].https://openreview.net/pdf?id=8gmWwjFyLj. [27] PENNINGTON J, SOCHER R, MANNING C.Glove:global vectors for word representation[C]//Proceedings of 2014 Conference on Empirical Methods in Natural Language Processing.[S.l.]:Association for Computational Linguistics, 2014:1532-1543. [28] JI G L, HE S Z, XU L H, et al.Knowledge graph embedding via dynamic mapping matrix[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing.[S.l.]:Association for Computational Linguistics, 2015:687-696. [29] JI G, LIU K, HE S, et al.Knowledge graph completion with adaptive sparse transfer matrix[C]//Proceedings of the 30th AAAI Conference on Artificial Intelligence.[S.l.]:AAAI Press, 2016:985-991. [30] QIAN W, FU C, ZHU Y, et al.Translating embeddings for knowledge graph completion with relation attention mechanism[C]//Proceedings of the 27th International Joint Conference on Artificial Intelligence.Washington D.C., USA:IEEE Press, 2018:4286-4292. [31] NGUYEN D Q, NGUYEN T, PHUNG D.A relational memory-based embedding model for triple classification and search personalization[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics.[S.l.]:Association for Computational Linguistics, 2020:3429-3435. [32] TROUILLON T, WELBL J, RIEDEL S, et al.Complex embeddings for simple link prediction[C]//Proceedings of the 33rd International Conference on Machine Learning.New York, USA:ACM Press, 2016:2071-2080. [33] MILLER A, FISCH A, DODGE J, et al.Key-value memory networks for directly reading documents[C]//Proceedings of 2016 Conference on Empirical Methods in Natural Language Processing.[S.l.]:Association for Computational Linguistics, 2016:1400-1409. [34] SUN H T, DHINGRA B, ZAHEER M, et al.Open domain question answering using early fusion of knowledge bases and text[C]//Proceedings of 2018 Conference on Empirical Methods in Natural Language Processing.[S.l.]:Association for Computational Linguistics, 2018:4231-4242. [35] ZHANG Y Y, DAI H J, KOZAREVA Z, et al.Variational reasoning for question answering with knowledge graph[EB/OL].[2021-06-05].https://arxiv.org/abs/1709.04071. [36] SAXENA A, TRIPATHI A, TALUKDAR P.Improving multi-hop question answering over knowledge graphs using knowledge base embeddings[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics.[S.l.]:Association for Computational Linguistics, 2020:4498-4507. |