[1] PENG C, KANG Z, CHENG Q.Subspace clustering via variance regularized ridge regression[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2017:682-691. [2] 钱雪忠, 姚琳燕.面向稀疏高维大数据的扩展增量模糊聚类算法[J].计算机工程, 2019, 45(6):75-81, 88. QIAN X Z, YAO L Y.Extended incremental fuzzy clustering algorithm for sparse high-dimensional big data[J].Computer Engineering, 2019, 45(6):75-81, 88.(in Chinese) [3] FENG L, CAI L, LIU Y, et al.Multi-view spectral clustering via robust local subspace learning[J].Soft Computing, 2017, 21(8):1937-1948. [4] HU Z X, NIE F P, CHANG W, et al.Multi-view spectral clustering via sparse graph learning[J].Neurocomputing, 2020, 384:1-10. [5] HUANG S D, REN Y Z, XU Z L.Robust multi-view data clustering with multi-view capped-norm K-means[J].Neurocomputing, 2018, 311:197-208. [6] DU L, ZHOU P, SHI L, et al.Robust multiple kernel k-means using l21-norm[C]//Proceedings of the 24th International Joint Conference on Artificial Intelligence.Washington D.C., USA:IEEE Press, 2015:3476-3482. [7] 沈俊鑫, 郭晓军, 王文浩, 等.基于协议组降低策略的二次并行k均值聚类算法[J].计算机工程, 2015, 41(8):150-155. SHEN J X, GUO X J, WANG W H, et al.Secondary parallel k-means clustering algorithm based on protocol group-reduced strategy[J].Computer Engineering, 2015, 41(8):150-155.(in Chinese) [8] KANG Z, PAN H Q, HOI S C H, et al.Robust graph learning from noisy data[J].IEEE Transactions on Cybernetics, 2020, 50(5):1833-1843. [9] LIU G C, LIN Z C, YAN S C, et al.Robust recovery of subspace structures by low-rank representation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(1):171-184. [10] CHEN M S, HUANG L, WANG C D, et al.Multi-view clustering in latent embedding space[C]//Proceedings of the 34th AAAI Conference on Artificial Intelligence.Palo Alto, USA:AAAI Press, 2020:3513-3520. [11] DU H S, WANG Y X, ZHANG F, et al.Low-rank discriminative adaptive graph preserving subspace learning[J].Neural Processing Letters, 2020, 52(3):2127-2149. [12] BRBIĆ M, KOPRIVA I.Multi-view low-rank sparse subspace clustering[J].Pattern Recognition, 2018, 73:247-258. [13] LUO S R, ZHANG C Q, ZHANG W, et al.Consistent and specific multi-view subspace clustering[C]//Proceedings of the 32th AAAI Conference on Artificial Intelligence.Palo Alto, USA:AAAI Press, 2018:3730-3737. [14] ZHANG G Y, ZHOU Y R, HE X Y, et al.One-step kernel multi-view subspace clustering[J].Knowledge-Based Systems, 2020, 189:105-126. [15] 陶洋, 鲍灵浪, 胡昊.结构约束的对称低秩表示子空间聚类算法[J].计算机工程, 2021, 47(4):56-61, 67. TAO Y, BAO L L, HU H.Structure-constrained symmetric low-rank representation algorithm for subspace clustering[J].Computer Engineering, 2021, 47(4):56-61, 67.(in Chinese) [16] NIE F P, WANG X Q, JORDAN M I, et al.The constrained Laplacian rank algorithm for graph-based clustering[C]//Proceedings of the 30th AAAI Conference on Artificial Intelligence.Palo Alto, USA:AAAI Press, 2016:1969-1976. [17] WANG H, YANG Y, LIU B, et al.A study of graph-based system for multi-view clustering[J].Knowledge-Based Systems, 2019, 163:1009-1019. [18] WANG H, YANG Y, LIU B.GMC:graph-based multi-view clustering[J].IEEE Transactions on Knowledge and Data Engineering, 2020, 32(6):1116-1129. [19] 葛君伟, 杨广欣.基于共享最近邻的密度自适应邻域谱聚类算法[J].计算机工程, 2021, 47(8):116-123. GE J W, YANG G X.Spectral clustering algorithm for density adaptive neighborhood based on shared nearest neighbors[J].Computer Engineering, 2021, 47(8):116-123.(in Chinese) [20] NIE F P, LI J, LI X L, et.al.Parameter-free auto-weighted multiple graph learning:a framework for multi-view clustering and semi-supervised classification[C]//Proceedings of International Joint Conference on Artificial Intelligence.Washington D.C., USA:IEEE Press, 2016:1881-1887. [21] NIE F P, TIAN L, LI X L.Multiview clustering via adaptively weighted Procrustes[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.New York, USA:ACM Press, 2018:2022-2030. [22] NIE F P, LI J, LI X L.Self-weighted multiview clustering with multiple graphs[C]//Proceedings of the 26th International Joint Conference on Artificial Intelligence.Melbourne, Australia:International Joint Conferences on Artificial Intelligence Organization, 2017:2564-2570. [23] LIN S X, ZHONG G, SHU T.Simultaneously learning feature-wise weights and local structures for multi-view subspace clustering[J].Knowledge-Based Systems, 2020, 205:106280. [24] LIU X W, WANG L, ZHANG J, et al.Global and local structure preservation for feature selection[J].IEEE Transactions on Neural Networks and Learning Systems, 2014, 25(6):1083-1095. [25] BOYD S, PARIKH N, CHU E.Distributed optimization and statistical learning via the alternating direction method of multipliers[M].[S.l.]:Now Publishers Inc., 2011. [26] DU S Q, MA Y D, MA Y R.Graph regularized compact low rank representation for subspace clustering[J].Knowledge-Based Systems, 2017, 118:56-69. [27] BOYD S.Convex optimization:from embedded real-time to large-scale distributed[C]//Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York, USA:ACM Press, 2011:21-24. [28] XIA R, PAN Y, DU L, et al.Robust multi-view spectral clustering via low-rank and sparse decomposition[C]//Proceedings of the 28th AAAI Conference on Artificial Intelligence.Palo Alto, USA:AAAI Press, 2014:2149-2155. [29] RIEDEL K S.A Sherman-Morrison-Woodbury identity for rank augmenting matrices with application to centering[J].SIAM Journal on Matrix Analysis and Applications, 1992, 13(2):659-662. |