1 |
PǍIŞ V, TUFIŞ D. Capitalization and punctuation restoration: a survey. Artificial Intelligence Review, 2022, 55(3): 1681- 1722.
doi: 10.1007/s10462-021-10051-x
|
2 |
|
3 |
VANDEGHINSTE V, VERWIMP L, PELWMANS J, et al. A comparison of different punctuation prediction approaches in a translation context[C]//Proceedings of the 21st Annual Conference of the European Association for Machine Translation. Alacant, Spain: [s. n.], 2018: 269-278.
|
4 |
ZHOU C, LI Q, LI C, et al. A comprehensive survey on pretrained foundation models: a history from BERT to ChatGPT[EB/OL]. [2023-09-10]. https://arxiv.org/pdf/2302.09419v1.
|
5 |
|
6 |
SHI N, WANG W, WANG B X, et al. Incorporating external POS tagger for punctuation restoration[C]//Proceedings of ISCA'21. Washington D. C., USA: IEEE Press, 2021: 1987-1991.
|
7 |
DAI Z H, LAI G K, YANG Y M, et al. Funnel-transformer: filtering out sequential redundancy for efficient language processing[C]//Proceedings of NIPS'20. Cambridge, USA: MIT Press, 2020: 4271-4282.
|
8 |
YI J Y, TAO J H, TIAN Z K, et al. Focal loss for punctuation prediction[C]//Proceedings of ISCA'20. Washington D. C., USA: IEEE Press, 2020: 721-725.
|
9 |
刘鹏远, 王伟康, 邱立坤, 等. CDCPP: 跨领域中文标点符号预测. 中文信息学报, 2021, 35(6): 131- 140.
doi: 10.3969/j.issn.1003-0077.2021.06.014
|
|
LIU P Y, WANG W K, QIU L K, et al. CDCPP: cross-domain Chinese punctuation prediction. Journal of Chinese Information Processing, 2021, 35(6): 131- 140.
doi: 10.3969/j.issn.1003-0077.2021.06.014
|
10 |
陈玉娜, 史晓东. 通过标点恢复提高机器同传效果. 计算机应用, 2020, 40(4): 972- 977.
|
|
CHEN Y N, SHI X D. Improving machine simultaneous interpretation by punctuation recovery. Journal of Computer Applications, 2020, 40(4): 972- 977.
|
11 |
COURTLAND M, FAULKNER A, MCELVAIN G. Efficient automatic punctuation restoration using bidirectional transformers with robust inference[C]//Proceedings of the 17th International Conference on Spoken Language Translation. Stroudsburg, USA: Association for Computational Linguistics, 2020: 272-279.
|
12 |
ALAM T, KHAN A, ALAM F. Punctuation restoration using transformer models for high-and low-resource languages[C]//Proceedings of the 6th Workshop on Noisy User-generated Text. Stroudsburg, USA: Association for Computational Linguistics, 2020: 132-142.
|
13 |
KENTON J D M W C, TOUTANOVA L K. BERT: pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of NAACL-HLT'19. Washington D. C., USA: IEEE Press, 2019: 4171-4186.
|
14 |
|
15 |
LIN T Y, WANG Y X, LIU X Y, et al. A survey of transformers. AI Open, 2022, 3, 111- 132.
doi: 10.1016/j.aiopen.2022.10.001
|
16 |
孔韦韦, 田乔鑫, 滕金保, 等. 融合注意力机制的混合神经网络文本情感分析模型. 电讯技术, 2023, 63(6): 781- 789.
|
|
KONG W W, TIAN Q C, TENG J B, et al. A hybrid neural network text sentiment analysis model with attention mechanism. Telecommunication Engineering, 2023, 63(6): 781- 789.
|
17 |
STOLCKE A, SHRIBERG E. Automatic linguistic segmentation of conversational speech[C]//Proceedings of the 4th International Conference on Spoken Language Processing. Philadelphia, USA: IEEE Press, 1996: 1005-1008.
|
18 |
LU W, NG H T. Better punctuation prediction with dynamic conditional random fields[C]//Proceedings of IEEE Conference on Empirical Methods in Natural Language Processing. Washington D. C., USA: IEEE Press, 2010: 177-186.
|
19 |
SUTTON C, ROHANIMANESH K, MCCALLUM A. Dynamic conditional random fields: factorized probabilistic models for labeling and segmenting sequence data[C]//Proceedings of the 21st International Conference on Machine learning. New York, USA: ACM Press, 2004: 99-108.
|
20 |
CHE X, WANG C, YANG H, et al. Punctuation prediction for unsegmented transcript based on word vector[C]//Proceedings of the 20th IEEE International Conference on Language Resources and Evaluation. Washington D. C., USA: IEEE Press, 2016: 654-658.
|
21 |
CHO E, KILGOUR K, NIEHUES J, et al. Combination of NN and CRF models for joint detection of punctuation and disfluencies[C]// Proceedings of ISCA'15. Washington D. C., USA: IEEE Press, 2015: 315-326.
|
22 |
TILK O, ALUMÄE T. Bidirectional recurrent neural network with attention mechanism for punctuation restoration[C]// Proceedings of ISCA'16. Washington D. C., USA: IEEE Press, 2016: 276-285.
|
23 |
段大高, 梁少虎, 赵振东, 等. 基于自注意力机制的中文标点符号预测模型. 计算机工程, 2020, 46(5): 291- 297.
URL
|
|
DUAN D G, LIANG S H, ZHAO Z D, et al. Prediction model of Chinese punctuation based on self-attention mechanism. Computer Engineering, 2020, 46(5): 291- 297.
URL
|
24 |
李雅昆, 潘晴. 基于改进的多层BLSTM的中文分词和标点预测. 计算机应用, 2018, 38(5): 1278-1282, 1314.
|
|
LI Y K, PAN Q. Joint Chinese word segmentation and punctuation prediction based on improved multilayer BLSTM network. Journal of Computer Applications, 2018, 38(5): 1278-1282, 1314.
|
25 |
ZHANG Z, LIU J, CHI L H, et al. Word-level BERT-CNN-RNN model for Chinese punctuation restoration[C]//Proceedings of the 6th IEEE International Conference on Computer and Communications. Washington D. C., USA: IEEE Press, 2020: 1629-1633.
|
26 |
ZHU Y M, WU L W, CHENG S B, et al. Unified multimodal punctuation restoration framework for mixed-modality corpus[C]//Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing. Washington D. C., USA: IEEE Press, 2022: 7272-7276.
|
27 |
CHO Y, NG S, TRAN T, et al. Leveraging prosody for punctuation prediction of spontaneous speech[C]//Proceedings of ISCA'22. Washington D. C., USA: IEEE Press, 2022: 555-559.
|
28 |
PAPPAGARI R, ZELASKO P, MIKOLAJCZYK A, et al. Joint prediction of truecasing and punctuation for conversational speech in low-resource scenarios[C]//Proceedings of IEEE Automatic Speech Recognition and Understanding Workshop. Washington D. C., USA: IEEE Press, 2021: 1185-1191.
|
29 |
WANG W, LIU Y, JIANG W, et al. Making punctuation restoration robust with disfluency detection[C]//Proceedings of the 25th IEEE International Conference on Computer Supported Cooperative Work in Design. Washington D. C., USA: IEEE Press, 2022: 395-399.
|
30 |
LIN B H, WANG L Y. Joint prediction of punctuation and disfluency in speech transcripts[C]//Proceedings of ISCA'20. Washington D. C., USA: IEEE Press, 2020: 716-720.
|
31 |
CHEN Q, CHEN M Z, LI B, et al. Controllable time-delay transformer for real-time punctuation prediction and disfluency detection[C]//Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing. Washington D. C., USA: IEEE Press, 2020: 8069-8073.
|
32 |
CHEN Q, WANG W, CHEN M Z, et al. Discriminative self-training for punctuation prediction[C]//Proceedings of ISCA'21. Washington D. C., USA: IEEE Press, 2021: 771-775.
|
33 |
HUNTER J S. The exponentially weighted moving average. Journal of Quality Technology, 1986, 18(4): 203- 210.
doi: 10.1080/00224065.1986.11979014
|
34 |
ELFWING S, UCHIBE E, DOYA K. Sigmoid-weighted linear units for neural network function approximation in reinforcement learning. Neural Networks, 2018, 107, 3- 11.
doi: 10.1016/j.neunet.2017.12.012
|
35 |
FEDERICO M, CETTOLLO M, BENTIVOGLI L, et al. Overview of the IWSLT 2012 evaluation campaign[C]//Proceedings of International Workshop on Spoken Language Translation. Washington D. C., USA: IEEE Press, 2012: 12-33.
|
36 |
KINGMA D P, BA J. Adam: a method for stochastic optimization[C]//Proceedings of the 3rd International Conference on Learning Representations. Washington D. C., USA: IEEE Press, 2015: 467-476.
|
37 |
HE P, GAO J, CHEN W. DeBERTaV3: improving DeBERTa using ELECTRA-Style pre-training with gradient-disentangled embedding sharing[C]//Proceedings of the 11th International Conference on Learning Representations. Washington D. C., USA: IEEE Press, 2022: 3321-3335.
|