1 |
JIAN S Y B, NAYAK T, MAJUMDER N, et al. Aspect sentiment triplet extraction using reinforcement learning[C]∥Proceedings of the 30th ACM International Conference on Information & Knowledge Management. New York, USA: ACM Press, 2021: 3603-3607.
|
2 |
徐康, 李霏, 姬东鸿. 结合依存图卷积与文本片段搜索的方面情感三元组抽取. 计算机工程, 2023, 49(4): 61- 67.
URL
|
|
XU K, LI F, JI D H. Aspect sentiment triple extraction by combining dependency graph convolution and text span search. Computer Engineering, 2023, 49(4): 61- 67.
URL
|
3 |
陈彦光, 王雷, 孙媛媛, 等. 面向法律文本的三元组抽取模型. 计算机工程, 2021, 47(5): 277- 284.
URL
|
|
CHEN Y G, WANG L, SUN Y Y, et al. Triple extraction model for legal texts. Computer Engineering, 2021, 47(5): 277- 284.
URL
|
4 |
|
5 |
PENG H Y, XU L, BING L D, et al. Knowing what, how and why: a near complete solution for aspect-based sentiment analysis[EB/OL]. [2023-11-18]. https://arxiv.org/abs/1911.01616.
|
6 |
LI Y, LIN Y D, LIN Y M, et al. A span-sharing joint extraction framework for harvesting aspect sentiment triplets. Knowledge-Based Systems, 2022, 242, 108366.
doi: 10.1016/j.knosys.2022.108366
|
7 |
JIN Z G, TAO M Y, WU X D, et al. Span-based dependency-enhanced graph convolutional network for aspect sentiment triplet extraction. Neurocomputing, 2024, 564, 126966.
doi: 10.1016/j.neucom.2023.126966
|
8 |
CHEN Y Q, CHEN K M, SUN X, et al. A span-level bidirectional network for aspect sentiment triplet extraction[C]∥Proceedings of the Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA: Association for Computational Linguistics, 2022: 4300-4309.
|
9 |
DAI D W, CHEN T, XIA S Y, et al. Double embedding and bidirectional sentiment dependence detector for aspect sentiment triplet extraction. Knowledge-Based Systems, 2022, 253, 109506.
doi: 10.1016/j.knosys.2022.109506
|
10 |
CHEN Y Q, ZHANG Z Q, ZHOU G Y, et al. Span-based dual-decoder framework for aspect sentiment triplet extraction. Neurocomputing, 2022, 492(C): 211- 221.
|
11 |
CHEN S W, WANG Y, LIU J, et al. Bidirectional machine reading comprehension for aspect sentiment triplet extraction[EB/OL]. [2023-11-18]. https://arxiv.org/abs/2103.07665.
|
12 |
LIU S, LI K W, LI Z H. A robustly optimized BMRC for aspect sentiment triplet extraction[C]∥Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg, USA: Association for Computational Linguistics, 2022: 272-278.
|
13 |
ZHAI Z P, CHEN H, FENG F X, et al. COM-MRC: a context-masked machine reading comprehension framework for aspect sentiment triplet extraction[C]∥ Proceedings of the Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA: Association for Computational Linguistics, 2022: 3230-3241.
|
14 |
CHEN F, YANG Z L, HUANG Y F. A multi-task learning framework for end-to-end aspect sentiment triplet extraction. Neurocomputing, 2022, 479(C): 12- 21.
|
15 |
LIU Y X, ZHOU Y, LI Z M, et al. HIM: an end-to-end hierarchical interaction model for aspect sentiment triplet extraction. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2023, 31, 2272- 2285.
doi: 10.1109/TASLP.2023.3282379
|
16 |
FEI H, REN Y F, ZHANG Y, et al. Nonautoregressive encoder-decoder neural framework for end-to-end aspect-based sentiment triplet extraction. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(9): 5544- 5556.
doi: 10.1109/TNNLS.2021.3129483
|
17 |
ALBADANI B, DONG J, SHI R H, et al. SMGNN: span-to-span multi-channel graph neural network for aspect-sentiment triplet extraction. Journal of Intelligent Information Systems, 2023, 61(3): 695- 715.
doi: 10.1007/s10844-023-00794-0
|
18 |
CHEN H, ZHAI Z P, FENG F X, et al. Enhanced multi-channel graph convolutional network for aspect sentiment triplet extraction[C]∥Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, USA: Association for Computational Linguistics, 2022: 2974-2985.
|
19 |
SHI X F, HU M, DENG J W, et al. Integration of multi-branch GCNs enhancing aspect sentiment triplet extraction. Applied Sciences, 2023, 13(7): 4345.
doi: 10.3390/app13074345
|
20 |
YUAN L, WANG J, YU L C, et al. Encoding syntactic information into transformers for aspect-based sentiment triplet extraction. IEEE Transactions on Affective Computing, 2024, 15(2): 722- 735.
doi: 10.1109/TAFFC.2023.3291730
|
21 |
SUN X W, ZHU Z F, QI J T, et al. Affective commonsense knowledge enhanced dependency graph for aspect sentiment triplet extraction. The Journal of Supercomputing, 2024, 80(7): 8614- 8636.
doi: 10.1007/s11227-023-05778-z
|
22 |
SHI L L, HAN D H, HAN J Y, et al. Dependency graph enhanced interactive attention network for aspect sentiment triplet extraction. Neurocomputing, 2022, 507(C): 315- 324.
|
23 |
|
24 |
DU Z X, QIAN Y J, LIU X, et al. GLM: general language model pretraining with autoregressive blank infilling[EB/OL]. [2023-11-18]. http://arxiv.org/abs/2103.10360.
|
25 |
|
26 |
ROMBACH R, BLATTMANN A, LORENZ D, et al. High-resolution image synthesis with latent diffusion models[C]∥Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA: IEEE Press, 2022: 10674-10685.
|
27 |
|
28 |
|
29 |
WEI J, WANG X Z, SCHUURMANS D, et al. Chain-of-thought prompting elicits reasoning in large language models[C]∥Proceedings of the 36th International Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2022: 24824-24837.
|
30 |
LIU X, JI K X, FU Y C, et al. P-Tuning v2: prompt tuning can be comparable to fine-tuning across scales and tasks[EB/OL]. [2023-11-18]. https://arxiv.org/abs/2110.07602v2.
|
31 |
|
32 |
WADHWA S, AMIR S, WALLACE B C. Revisiting Relation Extraction in the era of Large Language Models[C]∥Proceedings of the Conference Association for Computational Linguistics Meeting. Stroudsburg, USA: Association for Computational Linguistics, 2023: 15566-15589.
|
33 |
|
34 |
|
35 |
|
36 |
PONTIKI M, GALANIS D, PAVLOPOULOS J, et al. SemEval-2016 Task 5: aspect based sentiment analysis[C]∥ Proceedings of the 8th International Workshop on Semantic Evaluation. Stroudsburg, USA: Association for Computational Linguistics, 2014: 27-35.
|
37 |
LIANG S, WEI W, MAO X L, et al. STAGE: span tagging and greedy inference scheme for aspect sentiment triplet extraction[EB/OL]. [2023-11-18]. http://arxiv.org/abs/2211.15003.
|
38 |
LUO X L, YANG M, WANG Y H. Tagging-assisted generation model with encoder and decoder supervision for aspect sentiment triplet extraction[C]∥Proceedings of Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA: Association for Computational Linguistics, 2023: 2078-2093.
|
39 |
LI P, LI P, ZHANG K. Dual-channel span for aspect sentiment triplet extraction[C]∥ Proceedings of the Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA: Association for Computational Linguistics, 2023: 248-261.
|
40 |
DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[EB/OL]. [2023-11-18]. https://arxiv.org/pdf/1810.04805.
|