1 |
王佟, 韩效忠, 邓军, 等. 论中国煤炭地质勘查工作在新条件下的定位与重大研究问题. 煤田地质与勘探, 2023, 51 (2): 1- 19.
|
|
WANG T , HAN X Z , DENG J , et al. Orientation and major research problems of coal geological exploration in China under new conditions. Coal Geology[WT《Times New Roman》]& Exploration, 2023, 51 (2): 1- 19.
|
2 |
程德强, 寇旗旗, 江鹤, 等. 全矿井智能视频分析关键技术综述. 工矿自动化, 2023, 49 (11): 1- 21.
|
|
CHENG D Q , KOU Q Q , JIANG H , et al. Overview of key technologies for mine-wide intelligent video analysis. Industry and Mine Automation, 2023, 49 (11): 1- 21.
|
3 |
张书伟. 面向智能安防场景的人体行为识别算法研究及应用[D]. 西安: 西安电子科技大学, 2021.
|
|
ZHANG S W. Research and application of human behavior recognition algorithm for intelligent security scenes[D]. Xi'an: Xidian University, 2021. (in Chinese)
|
4 |
HE K M, ZHANG X Y, REN S Q, et al. Delving deep into rectifiers: surpassing human-level performance on ImageNet classification[C]//Proceedings of the IEEE International Conference on Computer Vision. Washington D.C., USA: IEEE Press, 2015: 1026-1034.
|
5 |
SHARMA S, GULERIA K. Deep learning models for image classification: comparison and applications[C]//Proceedings of the 2nd International Conference on Advance Computing and Innovative Technologies in Engineering. Washington D.C., USA: IEEE Press, 2022: 1733-1738.
|
6 |
刘雪, 沈长盈, 吕学泽, 等. 基于改进MobileNetV3-Large的鸡蛋新鲜度识别模型. 农业工程学报, 2022, 38 (17): 196- 204.
|
|
LIU X , SHEN C Y , LÜ X Z , et al. Recognizing egg freshness using an improved MobileNetV3-Large. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38 (17): 196- 204.
|
7 |
李小平, 白超. 基于深度学习的司机疲劳驾驶检测方法研究. 铁道学报, 2021, 43 (6): 78- 87.
|
|
LI X P , BAI C . Research on driver fatigue driving detection method based on deep learning. Journal of the China Railway Society, 2021, 43 (6): 78- 87.
|
8 |
ZHOU Y, CHEN S C, WANG Y M, et al. Review of research on lightweight convolutional neural networks[C]//Proceedings of the 5th IEEE Information Technology and Mechatronics Engineering Conference. Washington D.C., USA: IEEE Press, 2020: 1713-1720.
|
9 |
ZHANG X X, CUI P, XU R Z, et al. Deep stable learning for out-of-distribution generalization[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2021: 5372-5382.
|
10 |
LI Y H, LIU J, WANG L L. Lightweight network research based on deep learning: a review[C]//Proceedings of the 37th Chinese Control Conference. Washington D.C., USA: IEEE Press, 2018: 9021-9026.
|
11 |
毕鹏程, 罗健欣, 陈卫卫. 轻量化卷积神经网络技术研究. 计算机工程与应用, 2019, 55 (16): 25- 35.
|
|
BI P C , LUO J X , CHEN W W . Research on lightweight convolutional neural network technology. Computer Engineering and Applications, 2019, 55 (16): 25- 35.
|
12 |
|
13 |
HOWARD A G, ZHU M L, CHEN B, et al. MobileNets: efficient convolutional neural networks for mobile vision applications[EB/OL]. [2023-08-05]. http://arxiv.org/abs/1704.04861v1.
|
14 |
SANDLER M, HOWARD A, ZHU M L, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2018: 4510-4520.
|
15 |
TAN M X, CHEN B, PANG R M, et al. MnasNet: platform-aware neural architecture search for mobile[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2019: 2820-2828.
|
16 |
HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2018: 7132-7141.
|
17 |
HOWARD A, SANDLER M, CHEN B, et al. Searching for MobileNetV3[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Washington D.C., USA: IEEE Press, 2019: 1314-1324.
|
18 |
WANG J D , LAN C L , LIU C , et al. Generalizing to unseen domains: a survey on domain generalization. IEEE Transactions on Knowledge and Data Engineering, 2022, 7, 1- 6.
|
19 |
|
20 |
CARLUCCI F M, D'INNOCENTE A, BUCCI S, et al. Domain generalization by solving jigsaw puzzles[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2019: 2229-2238.
|
21 |
ZHONG Z , ZHENG L , KANG G L , et al. Random erasing data augmentation. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34 (7): 13001- 13008.
|
22 |
WANG Q L, WU B G, ZHU P F, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2020: 11534-11542.
|
23 |
|
24 |
STROBL E V , ZHANG K , VISWESWARAN S . Approximate kernel-based conditional independence tests for fast non-parametric causal discovery. Journal of Causal Inference, 2019, 7 (1): 1- 24.
|
25 |
LI D, YANG Y X, SONG Y Z, et al. Deeper, broader and artier domain generalization[C]//Proceedings of the IEEE International Conference on Computer Vision. Washington D.C., USA: IEEE Press, 2017: 5542-5550.
|