1 |
陈进. 浅析中国城市智能交通系统产业化发展趋势. 人民交通, 2020,(9): 84- 86.
URL
|
|
CHEN J. Analysis of the development trend of industrialization of urban intelligent traffic system in China. People's Transportation, 2020,(9): 84- 86.
URL
|
2 |
王笑京. 中国智能交通发展回眸(二)——对中国智能交通起步有重要影响的几次国际交流. 中国交通信息化, 2019,(5): 15, 18- 25.
doi: 10.13439/j.cnki.itsc.2019.05.001
|
|
WANG X J. Review on the development of intelligent transportation in China (Ⅱ)—several international exchanges that have important influence on the start of intelligent transportation in China. China ITS Journal, 2019,(5): 15, 18- 25.
doi: 10.13439/j.cnki.itsc.2019.05.001
|
3 |
GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2014: 580-587.
|
4 |
GIRSHICK R. Fast R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2015: 1440-1448.
|
5 |
REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137- 1149.
doi: 10.1109/TPAMI.2016.2577031
|
6 |
|
7 |
LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of the IEEE International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2017: 2980-2988.
|
8 |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2016: 779-788.
|
9 |
WANG H W, YANG J D, GE F H, et al. Traffic sign detection algorithm based on improved YOLOv4[C]//Proceedings of the 6th IEEE Information Technology, Networking, Electronic and Automation Control Conference. Washington D. C., USA: IEEE Press, 2023: 142-147.
|
10 |
贾子豪, 王文青, 刘光灿. 改进YOLOv5的轻量化交通标志检测算法. 数据采集与处理, 2023, 38(6): 1434- 1444.
doi: 10.16337/j.1004-9037.2023.06.017
|
|
JIA Z H, WANG W Q, LIU G C. Improved lightweight traffic sign detection algorithm of YOLOv5. Journal of Data Acquisition and Processing, 2023, 38(6): 1434- 1444.
doi: 10.16337/j.1004-9037.2023.06.017
|
11 |
WANG J F, CHEN Y, DONG Z K, et al. Improved YOLOv5 network for real-time multi-scale traffic sign detection. Neural Computing and Applications, 2023, 35(10): 7853- 7865.
doi: 10.1007/s00521-022-08077-5
|
12 |
赵宏, 冯宇博. 基于CGS-Ghost YOLO的交通标志检测研究. 计算机工程, 2023, 49(12): 194- 204.
doi: 10.19678/j.issn.1000-3428.0066520
|
|
ZHAO H, FENG Y B. Research on traffic sign detection based on CGS-Ghost YOLO. Computer Engineering, 2023, 49(12): 194- 204.
doi: 10.19678/j.issn.1000-3428.0066520
|
13 |
查超能, 罗素云, 何佳. 雨天下基于注意力机制与特征融合的交通标志识别. 重庆理工大学学报(自然科学版), 2023, 37(11): 20- 31.
URL
|
|
ZHA C N, LUO S Y, HE J. Traffic sign recognition based on attention mechanism and feature fusion in rainy weather. Journal of Chongqing University of Technology(Natural Science), 2023, 37(11): 20- 31.
URL
|
14 |
谭鑫平, 高志辉, 韩航迪, 等. 基于改进YOLOv5的荧光图像细胞智能检测研究. 半导体光电, 2023, 44(5): 709- 716.
doi: 10.16818/j.issn1001-5868.2023052801
|
|
TAN X P, GAO Z H, HAN H D, et al. Intelligent detection of cells in fluorescence images based on improved YOLOv5. Semiconductor Optoelectronics, 2023, 44(5): 709- 716.
doi: 10.16818/j.issn1001-5868.2023052801
|
15 |
HE K, ZHANG X, REN S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904- 1916.
doi: 10.1109/TPAMI.2015.2389824
|
16 |
WANG C Y, BOCHKOVSKIY A, LIAO H Y M. Scaled-YOLOv4: scaling cross stage partial network[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2021: 13029-13038.
|
17 |
LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2017: 2117-2125.
|
18 |
LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 8759-8768.
|
19 |
HOWARD A G, ZHU M L, CHEN B, et al. MobileNets: efficient convolutional neural networks for mobile vision applications[EB/OL]. [2023-11-05]. http://arxiv.org/abs/1704.04861v1.
|
20 |
|
21 |
WANG P Q, CHEN P F, YUAN Y, et al. Understanding convolution for semantic segmentation[C]//Proceedings of the IEEE Winter Conference on Applications of Computer Vision. Washington D. C., USA: IEEE Press, 2018: 1451-1460.
|
22 |
WANG J Q, CHEN K, XU R, et al. CARAFE: content-aware ReAssembly of FEatures[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2019: 3007-3016.
|
23 |
|
24 |
ZHANG Q L, YANG Y B. SA-Net: shuffle attention for deep convolutional neural networks[C]//Proceedings of the ICASSP 2021 IEEE International Conference on Acoustics, Speech and Signal Processing. Washington D. C., USA: IEEE Press, 2021: 2235-2239.
|
25 |
|
26 |
DAI Y M, GIESEKE F, OEHMCKE S, et al. Attentional feature fusion[C]//Proceedings of the IEEE Winter Conference on Applications of Computer Vision. Washington D. C., USA: IEEE Press, 2021: 3560-3569.
|
27 |
ZHANG J M, HUANG M T, JIN X K, et al. A real-time Chinese traffic sign detection algorithm based on modified YOLOv2. Algorithms, 2017, 10(4): 127.
doi: 10.3390/a10040127
|
28 |
WANG Q L, WU B G, ZHU P F, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 11534-11542.
|
29 |
HU J, SHEN L, ALBANIE S, et al. Squeeze-and-excitation networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8): 2011- 2023.
doi: 10.1109/TPAMI.2019.2913372
|
30 |
吕禾丰, 陆华才. 基于YOLOv5算法的交通标志识别技术研究. 电子测量与仪器学报, 2021, 35(10): 137- 144.
doi: 10.13382/j.jemi.B2104449
|
|
LÜ H F, LU H C. Research on traffic sign recognition technology based on YOLOv5 algorithm. Journal of Electronic and Instrumentation, 2021, 35(10): 137- 144.
doi: 10.13382/j.jemi.B2104449
|
31 |
WANG X J, TIAN Y Q, ZHENG K F, et al. C2Net-YOLOv5: a bidirectional Res2Net-based traffic sign detection algorithm. Computers, Materials & Continua, 2023, 77(2): 1949- 1965.
doi: 10.32604/cmc.2023.042224
|