| 1 |
杨孝新, 刘婷婷, 刘福明, 等. 露天煤矿带式输送机智能巡检机器人. 露天采矿技术, 2022, 37 (4): 48- 51.
|
|
YANG X X , LIU T T , LIU F M , et al. Intelligent inspection robots for belt conveyors in open-pit coal mines. Opencast Mining Technology, 2022, 37 (4): 48- 51.
|
| 2 |
杨春雨, 张鑫. 煤矿机器人环境感知与路径规划关键技术. 煤炭学报, 2022, 47 (7): 2844- 2872.
|
|
YANG C Y , ZHANG X . Key technologies of coal mine robots for environment perception and path planning. Journal of China Coal Society, 2022, 47 (7): 2844- 2872.
|
| 3 |
唐昀超, 祁少军, 朱立学, 等. 移动机器人避障运动研究. 系统仿真学报, 2024, 36 (1): 1- 26.
|
|
TANG Y C , QI S J , ZHU L X , et al. Obstacle avoidance motion in mobile robotics. Journal of System Simulation, 2024, 36 (1): 1- 26.
|
| 4 |
WANG Z L , GAO F , ZHAO Y , et al. Improved A * algorithm and model predictive control-based path planning and tracking framework for hexapod robots. Industrial Robot: the International Journal of Robotics Research and Application, 2023, 50 (1): 135- 144.
doi: 10.1108/IR-01-2022-0028
|
| 5 |
王志特, 罗丽平, 廖义奎. 改进A * 算法融合改进动态窗口法的移动机器人路径规划. 计算机工程, 2024, 50 (8): 86- 101.
doi: 10.19678/j.issn.1000-3428.0068483
|
|
WANG Z T , LUO L P , LIAO Y K . Mobile robot path planning by improved A * algorithm fused with improved dynamic window approach. Computer Engineering, 2024, 50 (8): 86- 101.
doi: 10.19678/j.issn.1000-3428.0068483
|
| 6 |
巩慧, 倪翠, 王朋, 等. 基于Dijkstra算法的平滑路径规划方法. 北京航空航天大学学报, 2024, 50 (2): 535- 541.
|
|
GONG H , NI C , WANG P , et al. A smooth path planning method based on Dijkstra algorithm. Journal of Beijing University of Aeronautics and Astronsutics, 2024, 50 (2): 535- 541.
|
| 7 |
高飞翔, 郝万君, 吴宇, 等. 改进人工势场法机器人避障路径规划研究. 计算机仿真, 2023, 40 (9): 431-436, 442.
|
|
GAO F X , HAO W J , WU Y , et al. Research on robot obstacle avoidance path planning based on improved artificial potential field method. Computer Simulation, 2023, 40 (9): 431-436, 442.
|
| 8 |
ZHANG R , GUO H , ANDRIUKAITIS D , et al. Intelligent path planning by an improved RRT algorithm with dual grid map. Alexandria Engineering Journal, 2024, 88, 91- 104.
doi: 10.1016/j.aej.2023.12.044
|
| 9 |
王宏民, 李江源, 蒋孟, 等. 基于改进哈里斯鹰优化算法的多机器人协作焊接路径规划. 机电工程技术, 2024, 53 (1): 35- 39.
|
|
WANG H M , LI J Y , JIANG M , et al. Multi-robot cooperative welding path planning based on improved Harris eagle optimization algorithm. Mechanical & Electrical Engineering Technology, 2024, 53 (1): 35- 39.
|
| 10 |
TERO A , TAKAGI S , SAIGUSA T , et al. Rules for biologically inspired adaptive network design. Science, 2010, 327 (5964): 439- 442.
doi: 10.1126/science.1177894
|
| 11 |
汪丹. 多头绒泡菌仿生算法优化及其应用[D]. 重庆: 西南大学, 2021.
|
|
WANG D. Optimization of physarum polycephalum bionic algorithm and its application[D]. Chongqing: Southwest University, 2021. (in Chinese)
|
| 12 |
ZHANG Y , YANG Z Q . Application of an improved physarum polycephalum algorithm on QoS routing problem. International Journal of Wireless and Mobile Computing, 2021, 21 (4): 323.
doi: 10.1504/IJWMC.2021.121613
|
| 13 |
ZHANG Y , YANG Z Q , QI X . An improved physarum polycephalum algorithm for the Steiner tree problem. International Journal of Bio-Inspired Computation, 2022, 19 (1): 40.
doi: 10.1504/IJBIC.2022.120753
|
| 14 |
LUO Y D , GUO J W , LAO Z P , et al. Swarm robot exploration strategy for path formation tasks inspired by physarum polycephalum. Complexity, 2021, 2021 (1): 6698421.
doi: 10.1155/2021/6698421
|
| 15 |
CHUA L . Memristor the missing circuit element. IEEE Transactions on Circuit Theory, 1971, 18 (5): 507- 519.
doi: 10.1109/TCT.1971.1083337
|
| 16 |
STRUKOV D B , SNIDER G S , STEWART D R , et al. The missing memristor found. Nature, 2008, 453 (7191): 80- 83.
doi: 10.1038/nature06932
|
| 17 |
YU H , NI L , HUANG H . Distributed in-memory computing on binary memristor-crossbar for machine learning. Berlin, Germany: Springer, 2017.
|
| 18 |
PERSHIN Y V , DI VENTRA M . Solving mazes with memristors: a massively parallel approach. Physical Review E, 2011, 84 (4): 046703.
doi: 10.1103/PhysRevE.84.046703
|
| 19 |
AWAD A , PANG W , LUSSEAU D , et al. A survey on physarum polycephalum intelligent foraging behaviour and bio-inspired applications. Artificial Intelligence Review, 2023, 56 (1): 1- 26.
doi: 10.1007/s10462-021-10112-1
|
| 20 |
YONEOKA E , TAKAMATSU A . Relation between learning process and morphology of transport tube network in plasmodium of physarum polycephalum. Front Cell Dev Biol, 2023, 11, 1249165.
doi: 10.3389/fcell.2023.1249165
|
| 21 |
WILKINSON R , KOZIOL M , ALIM K , et al. Flow modes provide a quantification of physarum network peristalsis. Fungal Ecology, 2023, 65, 101283.
doi: 10.1016/j.funeco.2023.101283
|
| 22 |
邓权芯. 基于忆阻网络的典型群体智能算法研究[D]. 成都: 电子科技大学, 2021.
|
|
DENG Q X. Research on typical swarm intelligence algorithm based on memristor network[D]. Chengdu: University of Electronic Science and Technology of China, 2021. (in Chinese)
|
| 23 |
吴雨横. 多头绒泡菌智能行为模型研究及其应用[D]. 重庆: 西南大学, 2013.
|
|
WU Y H. Research and application of physarum polycephalum's intelligent behavior model[D]. Chongqing: Southwest University, 2013. (in Chinese)
|
| 24 |
LI K , TORRES C E , THOMAS K , et al. Slime mold inspired routing protocols for wireless sensor networks. Swarm Intelligence, 2011, 5 (3): 183- 223.
|
| 25 |
XIONG L , ZHANG X G , CHEN Y . Experimental verification of volt-ampere characteristic curve for a memristor-based chaotic circuit. Circuit World, 2019, 46 (1): 13- 24.
doi: 10.1108/CW-04-2019-0035
|