作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2025, Vol. 51 ›› Issue (11): 366-376. doi: 10.19678/j.issn.1000-3428.0069500

• 开发研究与工程应用 • 上一篇    下一篇

基于MA-PPA的露天煤矿智能巡视机器人路径规划研究

祁永强1,*(), 胡杞澍2   

  1. 1. 中国矿业大学数学学院, 江苏 徐州 221116
    2. 中国矿业大学信息与控制工程学院, 江苏 徐州 221116
  • 收稿日期:2024-03-06 修回日期:2024-05-06 出版日期:2025-11-15 发布日期:2024-08-13
  • 通讯作者: 祁永强
  • 基金资助:
    国家自然科学基金(61304088); 中国矿业大学融合创新培育专项(2023ZDPYRH11)

Research on Path Planning of Intelligent Inspection Robot in Open-pit Coal Mine Based on Memristor Array and Physarum Polycephalum Algorithm

QI Yongqiang1,*(), HU Qishu2   

  1. 1. School of Mathematics, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
    2. School of Information and Control Engineering, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
  • Received:2024-03-06 Revised:2024-05-06 Online:2025-11-15 Published:2024-08-13
  • Contact: QI Yongqiang

摘要:

移动机器人在复杂环境下多使用智能算法进行路径规划, 但由于传统计算机存在"储存墙"问题, 算法运行需要耗费大量的时间。针对上述问题, 提出基于忆阻器阵列与多头绒泡菌算法(MA-PPA)的露天煤矿智能巡视机器人路径规划算法。忆阻器具有"存算一体"等特性, 能够降低算法的运行时间, 多头绒泡菌算法可以自组织且高效地找到最短路径。结合两者的优点, 根据忆阻器阻值随电流变化的正反馈性, 用忆阻器阵列实现了多头绒泡菌算法在二维全局环境下的路径规划, 并在忆阻器阵列中进行多头绒泡菌算法的并行计算, 大幅降低算法的运行时间。实验结果表明, 与其他传统的生物启发算法相比, 提出的算法降低了算法的时间复杂度, 寻找到的最短路径转弯次数更少。

关键词: 忆阻器阵列, 生物启发, 存算一体, 多头绒泡菌算法, 并行计算, 路径规划, 栅格法

Abstract:

Autonomous mobile robots employ intelligent algorithms for path planning in complex environments. However, the ″memory wall″ problem in traditional computers increases the running time of the algorithms substantially. To address this problem, this study proposes path planning for intelligent inspection robots in open-pit coal mines based on a Memristor Array and Physarum Polycephalum Algorithm (MA-PPA). A memristor device can reduce the running time of an algorithm because of its ″memory and computation integration″. The Physarum polycephalum algorithm can self-organize and efficiently locate the shortest path. By leveraging the advantages of both and based on the positive feedback property of the memristor resistance varying with current, the Physarum polycephalum algorithm is implemented for path planning in a two-dimensional global environment using a memristor array. Parallel computing is applied to the Physarum polycephalum algorithm on a memristor array, which significantly reduces the running time of the algorithm. Experimental results show that compared with traditional bio-inspired algorithms, the proposed algorithm reduces time complexity and finds the shortest path with fewer turns.

Key words: Memristor Array (MA), biological inspired, memory and computation integration, Physarum Polycephalum Algorithm (PPA), parallel computing, path planning, grid method