| 1 |  VLAHOGIANNI E I ,  KARLAFTIS M G ,  GOLIAS J C .  Short-term traffic forecasting: where we are and where we're going. Transportation Research Part C: Emerging Technologies, 2014, 43, 3- 19.  doi: 10.1016/j.trc.2014.01.005
 | 
																													
																						| 2 |  LEVIN M ,  TSAO Y D .  On forecasting freeway occupancies and volumes(abridgment). Transportation Research Record, 1980, (773): 47- 49. | 
																													
																						| 3 |  WILLIAMS B M ,  HOEL L A .  Modeling and forecasting vehicular traffic flow as a seasonal ARIMA process: theoretical basis and empirical results. Journal of Transportation Engineering, 2003, 129 (6): 664- 672.  doi: 10.1061/(ASCE)0733-947X(2003)129:6(664)
 | 
																													
																						| 4 |  GUO J H ,  HUANG W ,  WILLIAMS B M .  Adaptive Kalman filter approach for stochastic short-term traffic flow rate prediction and uncertainty quantification. Transportation Research Part C: Emerging Technologies, 2014, 43, 50- 64.  doi: 10.1016/j.trc.2014.02.006
 | 
																													
																						| 5 |  KAMARIANAKIS Y ,  PRASTACOS P .  Forecasting traffic flow conditions in an urban network: comparison of multivariate and univariate approaches. Transportation Research Record: Journal of the Transportation Research Board, 2003, 1857 (1): 74- 84.  doi: 10.3141/1857-09
 | 
																													
																						| 6 |  OKUTANI I ,  STEPHANEDES Y J .  Dynamic prediction of traffic volume through Kalman filtering theory. Transportation Research Part B: Methodological, 1984, 18 (1): 1- 11.  doi: 10.1016/0191-2615(84)90002-X
 | 
																													
																						| 7 |  ERMAGUN A ,  LEVINSON D .  Spatiotemporal short-term traffic forecasting using the network weight matrix and systematic detrending. Transportation Research Part C: Emerging Technologies, 2019, 104, 38- 52.  doi: 10.1016/j.trc.2019.04.014
 | 
																													
																						| 8 |  WANG J ,  DENG W ,  GUO Y T .  New Bayesian combination method for short-term traffic flow forecasting. Transportation Research Part C: Emerging Technologies, 2014, 43, 79- 94.  doi: 10.1016/j.trc.2014.02.005
 | 
																													
																						| 9 |  QI Y ,  ISHAK S .  A hidden Markov model for short term prediction of traffic conditions on freeways. Transportation Research Part C: Emerging Technologies, 2014, 43, 95- 111.  doi: 10.1016/j.trc.2014.02.007
 | 
																													
																						| 10 |  CASTRO-NETO M ,  JEONG Y S ,  JEONG M K , et al.  Online-SVR for short-term traffic flow prediction under typical and atypical traffic conditions. Expert Systems with Applications, 2009, 36 (3): 6164- 6173.  doi: 10.1016/j.eswa.2008.07.069
 | 
																													
																						| 11 |  WANG J ,  SHI Q X .  Short-term traffic speed forecasting hybrid model based on Chaos-wavelet analysis-support vector machine theory. Transportation Research Part C: Emerging Technologies, 2013, 27, 219- 232.  doi: 10.1016/j.trc.2012.08.004
 | 
																													
																						| 12 |  ZHENG Z D ,  SU D C .  Short-term traffic volume forecasting: a k-nearest neighbor approach enhanced by constrained linearly sewing principle component algorithm. Transportation Research Part C: Emerging Technologies, 2014, 43, 143- 157.  doi: 10.1016/j.trc.2014.02.009
 | 
																													
																						| 13 |  VLAHOGIANNI E I ,  KARLAFTIS M G ,  GOLIAS J C .  Optimized and meta-optimized neural networks for short-term traffic flow prediction: a genetic approach. Transportation Research Part C: Emerging Technologies, 2005, 13 (3): 211- 234.  doi: 10.1016/j.trc.2005.04.007
 | 
																													
																						| 14 |  DUNNE S ,  GHOSH B .  Regime-based short-term multivariate traffic condition forecasting algorithm. Journal of Transportation Engineering, 2012, 138 (4): 455- 466.  doi: 10.1061/(ASCE)TE.1943-5436.0000337
 | 
																													
																						| 15 |  LV Y S ,  DUAN Y J ,  KANG W W , et al.  Traffic flow prediction with big data: a deep learning approach. IEEE Transactions on Intelligent Transportation Systems, 2014, 16 (2): 865- 873.  URL
 | 
																													
																						| 16 |  LA A I ,  LOBO J L ,  CAPECCI E , et al.  Adaptive long-term traffic state estimation with evolving spiking neural networks. Transportation Research Part C: Emerging Technologies, 2019, 101, 126- 144.  doi: 10.1016/j.trc.2019.02.011
 | 
																													
																						| 17 |  MA X L ,  TAO Z M ,  WANG Y H , et al.  Long short-term memory neural network for traffic speed prediction using remote microwave sensor data. Transportation Research Part C: Emerging Technologies, 2015, 54, 187- 197.  doi: 10.1016/j.trc.2015.03.014
 | 
																													
																						| 18 |  ZHENG W Z ,  LEE D H ,  SHI Q X .  Short-term freeway traffic flow prediction: Bayesian combined neural network approach. Journal of Transportation Engineering, 2006, 132 (2): 114- 121.  doi: 10.1061/(ASCE)0733-947X(2006)132:2(114)
 | 
																													
																						| 19 |  DIMITRIOU L ,  TSEKERIS T ,  STATHOPOULOS A .  Adaptive hybrid fuzzy rule-based system approach for modeling and predicting urban traffic flow. Transportation Research Part C: Emerging Technologies, 2008, 16 (5): 554- 573.  doi: 10.1016/j.trc.2007.11.003
 | 
																													
																						| 20 | 罗例东. 高速公路异常事件影响范围演化分析与预测研究[D]. 重庆: 重庆大学, 2015. | 
																													
																						|  | LUO L D. Evolution analysis and prediction research on the influence range of expressway abnormal events[D]. Chongqing: Chongqing University, 2015. (in Chinese) | 
																													
																						| 21 | 张小安. 交通事故条件下的交通流仿真研究[D]. 广州: 广州大学, 2017. | 
																													
																						|  | ZHANG X A. Research on traffic flow simulation under traffic accident conditions[D]. Guangzhou: Guangzhou University, 2017. (in Chinese) | 
																													
																						| 22 |  | 
																													
																						|  | WANG W, AN H, SONG J, et al. From Baidu, Tesla made the latest achievements in the intelligence development trend of automobile[N]. China Computer News, 2021-11-08(14). (in Chinese) 10.3969/j.issn.2096-0182.2021.05.005 | 
																													
																						| 23 | 孙勇义.  Apollo开放的自动驾驶之路. 软件和集成电路, 2017, (11): 78- 79.  doi: 10.3969/j.issn.2096-062X.2017.11.039
 | 
																													
																						|  |  SUN Y Y .  Apollo's open road to autonomous driving. Software and Integrated Circuit, 2017, (11): 78- 79.  doi: 10.3969/j.issn.2096-062X.2017.11.039
 | 
																													
																						| 24 | 张明.  蘑菇车联发布以车路云为核心的自动驾驶系统. 工业经济论坛, 2020, 7 (6): 80- 81. | 
																													
																						|  |  ZHANG M .  Mushroom Car Federation released an automatic driving system with vehicle-road-cloud as the core. Intelligent Connected Vehicles, 2020, 7 (6): 80- 81. | 
																													
																						| 25 | 沈记全, 魏坤.  融合残差网络的CR-BiGRU入侵检测模型. 吉林大学学报(理学版), 2023, 61 (2): 353- 361.  doi: 10.13413/j.cnki.jdxblxb.2022032
 | 
																													
																						|  |  SHEN J Q ,  WEI K .  CR-BiGRU intrusion detection model based on residual network. Journal of Jilin University (Science Edition), 2023, 61 (2): 353- 361.  doi: 10.13413/j.cnki.jdxblxb.2022032
 | 
																													
																						| 26 | CHUNG J, GVLÇEHRE Ç, CHO K, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling[EB/OL]. [2023-08-10]. https://arxiv.org/abs/1412.3555 . | 
																													
																						| 27 |  GOODFELLOW I ,  BENGIO Y ,  COURVILLE A , et al.  Deep learning: adaptive computation and machine learning series. Cambridge, USA: The MIT Press, 2016. | 
																													
																						| 28 |  MIRJALILI S ,  LEWIS A .  The whale optimization algorithm. Advances in Engineering Software, 2016, 95, 51- 67.  doi: 10.1016/j.advengsoft.2016.01.008
 | 
																													
																						| 29 |  SYAFARUDDIN ,  NARIMATSU H ,  MIYAUCHI H .  Optimal energy utilization of photovoltaic systems using the non-binary genetic algorithm. Energy Technology & Policy, 2015, 2 (1): 10- 18.  URL
 | 
																													
																						| 30 | 华罗庚, 王元.  数论在近似分析中的应用. 北京: 科学出版社, 1978. | 
																													
																						|  |  HUA L G ,  W Y .  Application of number theory in approximate analysis. Beijing: Science Press, 1978. | 
																													
																						| 31 |  OU X F ,  WU M ,  PU Y Y , et al.  Cuckoo search algorithm with fuzzy logic and Gauss-Cauchy for minimizing localization error of WSN. Applied Soft Computing, 2022, 125, 109211.  doi: 10.1016/j.asoc.2022.109211
 | 
																													
																						| 32 | LOPEZ P A, BEHRISCH M, BIEKER-WALZ L, et al. Microscopic traffic simulation using SUMO[C]//Proceedings of the 21st International Conference on Intelligent Transportation Systems. Washington D. C., USA: IEEE Press, 2018: 2575-2582. |