作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2024, Vol. 50 ›› Issue (3): 306-316. doi: 10.19678/j.issn.1000-3428.0067583

• 开发研究与工程应用 • 上一篇    下一篇

基于改进VMD-XGBoost-BiLSTM组合模型的光伏发电异常检测

赵博超1, 马嘉骏1, 崔磊2, 栾文鹏1,*(), 朱静2   

  1. 1. 天津大学电气自动化与信息工程学院智能电网教育部重点实验室, 天津 300072
    2. 中国华能集团有限公司华能江苏综合能源服务有限公司, 江苏 南京 210015
  • 收稿日期:2023-05-10 出版日期:2024-03-15 发布日期:2024-03-13
  • 通讯作者: 栾文鹏
  • 基金资助:
    国家自然科学基金智能电网联合基金(U2066207); 中国华能集团有限公司总部科技项目(HNKJ22-H103)

Anomaly Detection for Photovoltaic Based on Improved VMD-XGBoost-BiLSTM Combination Model

Bochao ZHAO1, Jiajun MA1, Lei CUI2, Wenpeng LUAN1,*(), Jing ZHU2   

  1. 1. Key Laboratory of Smart Grid, Ministry of Education, School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China
    2. Huaneng Jiangsu Comprehensive Energy Service Co., Ltd., China Huaneng Group Co., Ltd., Nanjing 210015, Jiangsu, China
  • Received:2023-05-10 Online:2024-03-15 Published:2024-03-13
  • Contact: Wenpeng LUAN

摘要:

光伏发电是我国大力发展的重要新能源发电形式,其异常检测是为系统运维决策提供依据的重要环节。由组件老化、故障或不良因素造成的光伏系统运行状态异常将直接影响发电效率和能力,进而会对系统安全性和经济效益造成影响。然而,现有检测方法存在识别异常类型不全面、对标注数据数量依赖性强、更新模型成本高、对噪声和测量误差敏感等局限性以及不适合大规模推广部署的缺点。为解决这一问题,提出一种基于历史发电量以及气象监测数据的光伏发电异常检测方法。利用基于异常值去除和相关性分析的预处理步骤去除原始数据中的噪声并筛选最佳特征。通过变分模态分解(VMD)将数据分解成多个模态分量以提取光伏发电量的周期和非周期特征。构建改进VMD-XGBoost-BiLSTM组合模型,利用自适应赋权、Attention机制和改进鲸鱼优化算法的特点完成光伏发电量常态预测。在此基础上,通过与实际测量值进行对比,利用设定的规则进行异常判断。实验结果表明,该方法相较于单一BiLSTM和XGBoost模型平均误差下降幅度超过20%,其中约15.67%的性能提升得益于所提改进措施。

关键词: 光伏发电异常检测, 神经网络, 变分模态分解, 注意力机制, 改进鲸鱼优化算法

Abstract:

Photovoltaic is a vital and rapidly developing form of renewable energy generated in China, and anomaly detection is a crucial reference for making decisions on its system operation and maintenance. The abnormal operation status of a photovoltaic system caused by component aging, failure, and other adverse factors affect the power generation efficiency and capacity, which impact the system security and benefits. However, existing solutions have limitations, such as identification of limited types of abnormalities, significantly relying on labeled amount of data, additional costs for model updating, sensitivity to noise and measurement errors, and shortcomings unsuitable for large-scale promotion and deployment. A photovoltaic anomaly detection method based on historical power generation and meteorological monitoring data is proposed to solve this problem. Initially, the preprocessing steps based on spike removal and correlation analysis are used for original data denoising and feature refinement. Next, the Variational Mode Decomposition(VMD) is used to decompose the data into multiple Intrinsic Mode Function (IMF) to extract the periodic and nonperiodic characteristics of photovoltaic power generation. Subsequently, an improved VMD-XGBoost-BiLSTM hybrid model is established to precisely and stably predict normal photovoltaic power generation, benefiting from adaptive weighting, Attention mechanism, and improved Whale Optimization Algorithm (WOA). Finally, the prediction results are compared to actual data, and thus, abnormalities can be detected based on the proposed rules. The experimental results indicate that compared to a single BiLSTM and XGBoost model, this method reduces the average error by more than 20%, in which 15.67% is contributed by the series of improvement.

Key words: photovoltaic anomaly detection, neural network, Variational Mode Decomposition(VMD), attention mechanism, improved Whale Optimization Algorithm(WOA)