1 |
SOLLA M , PÉREZ-GRACIA V , FONTUL S . A review of GPR application on transport infrastructures: troubleshooting and best practices. Remote Sensing, 2021, 13 (4): 672- 726.
doi: 10.3390/rs13040672
|
2 |
侯斐斐, 施荣华, 雷文太, 等. 面向探地雷达B-scan图像的目标检测算法综述. 电子与信息学报, 2020, 42 (1): 191- 200.
doi: 10.11999/JEIT190680
|
|
HOU F F , SHI R H , LEI W T , et al. A review of target detection algorithm for GPR B-scan processing. Journal of Electronics & Information Technology, 2020, 42 (1): 191- 200.
doi: 10.11999/JEIT190680
|
3 |
ILLINGWORTH J , KITTLER J . A survey of the Hough transform. Computer Vision, Graphics, and Image Processing, 1988, 43 (2): 280.
|
4 |
BOOKSTEIN F L . Fitting conic sections to scattered data. Computer Graphics and Image Processing, 1979, 9 (1): 56- 71.
doi: 10.1016/0146-664X(79)90082-0
|
5 |
AKIMA H . A method of bivariate interpolation and smooth surface fitting for irregularly distributed data points. ACM Transactions on Mathematical Software, 1978, 4 (2): 148- 159.
doi: 10.1145/355780.355786
|
6 |
TODKAR S S , BALTAZART V , IHAMOUTEN A , et al. One-class SVM based outlier detection strategy to detect thin interlayer debondings within pavement structures using Ground Penetrating Radar data. Journal of Applied Geophysics, 2021, 192, 104392.
doi: 10.1016/j.jappgeo.2021.104392
|
7 |
REN S , HE K , GIRSHICK R , et al. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39 (6): 1137- 1149.
doi: 10.1109/TPAMI.2016.2577031
|
8 |
LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of the IEEE International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2017: 2980-2988.
|
9 |
LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]// Proceedings of European Conference on Computer Vision (ECCV). Berlin, Germany: Springer, 2016: 21-37.
|
10 |
|
11 |
|
12 |
LIU Z , WU W , GU X , et al. Application of combining YOLO models and 3D GPR images in road detection and maintenance. Remote Sensing, 2021, 13 (6): 1081- 1100.
doi: 10.3390/rs13061081
|
13 |
LI Y , ZHAO Z , LUO Y , et al. Real-time pattern-recognition of GPR images with YOLO v3 implemented by TensorFlow. Sensors, 2020, 20 (22): 6476- 6494.
doi: 10.3390/s20226476
|
14 |
韩海航, 莫佳笛, 周春鹏, 等. 基于注意力融合的三维探地雷达道路病害检测. 计算机工程与设计, 2022, 43 (9): 2669- 2677.
doi: 10.16208/j.issn1000-7024.2022.09.035
|
|
HAN H H , MO J D , ZHOU C P , et al. Road disease detection for 3D-GPR maps based on attention fusion. Computer Engineering and Design, 2022, 43 (9): 2669- 2677.
doi: 10.16208/j.issn1000-7024.2022.09.035
|
15 |
李海丰, 张凡, 朴敏楠, 等. 基于通道和空间注意力的机场道面地下目标自动检测. 计算机应用, 2023, 43 (3): 930- 935.
doi: 10.11772/j.issn.1001-9081.2022020168
|
|
LI H F , ZHANG F , PIAO M N , et al. Automatic detection of targets under airport pavement based on channel and spatial attention. Journal of Computer Applications, 2023, 43 (3): 930- 935.
doi: 10.11772/j.issn.1001-9081.2022020168
|
16 |
李海丰, 潘梦梦, 王怀超, 等. 基于尺度融合的机场跑道地下病害检测算法. 郑州大学学报(理学版), 2023, 55 (1): 64- 70.
doi: 10.13705/j.issn.1671-6841.2021312
|
|
LI H F , PAN M M , WANG H C , et al. Scale fusion based airport runway subsurface defect detection algorithm. Journal of Zhengzhou University (Natural Science Edition), 2023, 55 (1): 64- 70.
doi: 10.13705/j.issn.1671-6841.2021312
|
17 |
LIU Z , GU X , YANG H , et al. Novel YOLOv3 model with structure and hyperparameter optimization for detection of pavement concealed cracks in GPR images. IEEE Transactions on Intelligent Transportation Systems, 2022, 23 (11): 22258- 22268.
doi: 10.1109/TITS.2022.3174626
|
18 |
LI H , LI N , WU R , et al. GPR-RCNN: an algorithm of subsurface defect detection for airport runway based on GPR. IEEE Robotics and Automation Letters, 2021, 6 (2): 3001- 3008.
doi: 10.1109/LRA.2021.3062599
|
19 |
LI N , WU R , LI H , et al. MV-GPRNet: multi-view subsurface defect detection network for airport runway inspection based on GPR. Remote Sensing, 2022, 14 (18): 4472- 4489.
doi: 10.3390/rs14184472
|
20 |
宋谷长, 叶远春, 刘庆仁. 北京市城市道路塌陷成因及对策分析. 城市道桥与防洪, 2011, 8 (8): 250- 261.
doi: 10.16799/j.cnki.csdqyfh.2011.08.071
|
|
SONG G C , YE Y C , LIU Q R . Subsidence causation and countermeasure analysis of urban roads in Beijing. Urban Roads Bridges & Flood Control, 2011, 8 (8): 250- 261.
doi: 10.16799/j.cnki.csdqyfh.2011.08.071
|
21 |
陶连金, 袁松, 安军海. 城市道路地下空洞病害发展机理及对路面塌陷的影响. 黑龙江科技大学学报, 2015, 25 (3): 289- 293.
doi: 10.3969/j.issn.2095-7262.2015.03.013
|
|
TAO L J , YUAN S , AN J H . Development mechanism of cavity damage under urban roads and its influence on road surface subsidence. Journal of Heilongjiang University of Science and Technology, 2015, 25 (3): 289- 293.
doi: 10.3969/j.issn.2095-7262.2015.03.013
|
22 |
雷六斤. 城市道路塌陷的成因及隐患探查. 测绘通报, 2013,
URL
|
|
LEI L J . The causes of urban roads collapse and detection of hidden trouble. Bulletin of Surveying and Mapping, 2013,
URL
|
23 |
陈昌彦, 肖敏, 贾辉, 等. 城市道路地下病害成因及基于综合探测的工程分类探讨. 测绘通报, 2013,
URL
|
|
CHEN C Y , XIAO M , JIA H , et al. The genesis of urban underground roads disease and classification of engineer. Bulletin of Surveying and Mapping, 2013,
URL
|
24 |
崔孝飞. 城市地下病害体风险评估技术研究[D]. 郑州: 华北水利水电大学, 2020.
|
|
CUI X F. Research on risk assessment technology of urban underground diseases[D]. Zhengzhou: North China University of Water Resources and Electric Power, 2020. (in Chinese)
|
25 |
SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. (2015-04-10)[2023-11-20]. https://arxiv.org/abs/1409.1556.
|
26 |
HU J , SHEN L , ALBANIE S . Squeeze-and-excitation networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42 (8): 2011- 2023.
URL
|
27 |
WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision (ECCV). Berlin, Germany: Springer, 2018: 3-19.
|
28 |
WANG Q, WU B, ZHU P, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 11534-11542.
|