1 |
GAO H B, CHENG B, WANG J Q, et al. Object classification using CNN-based fusion of vision and LIDAR in autonomous vehicle environment. IEEE Transactions on Industrial Informatics, 2018, 14(9): 4224- 4231.
doi: 10.1109/TII.2018.2822828
|
2 |
何俊, 张彩庆, 李小珍, 等. 面向深度学习的多模态融合技术研究综述. 计算机工程, 2020, 46(5): 1- 11.
URL
|
|
HE J, ZHANG C Q, LI X Z, et al. Survey of research on multimodal fusion technology for deep learning. Computer Engineering, 2020, 46(5): 1- 11.
URL
|
3 |
ZHANG X C, YE P, LEUNG H, et al. Object fusion tracking based on visible and infrared images: a comprehensive review. Information Fusion, 2020, 63, 166- 187.
doi: 10.1016/j.inffus.2020.05.002
|
4 |
MA J Y, MA Y, LI C. Infrared and visible image fusion methods and applications: a survey. Information Fusion, 2019, 45, 153- 178.
doi: 10.1016/j.inffus.2018.02.004
|
5 |
SHREYAMSHA KUMAR B K. Image fusion based on pixel significance using cross bilateral filter. Signal, Image and Video Processing, 2015, 9(5): 1193- 1204.
doi: 10.1007/s11760-013-0556-9
|
6 |
ZHOU Z, DONG M, XIE X, et al. Fusion of infrared and visible images for night-vision context enhancement. Appl Opt, 2016, 55(23): 6480- 6490.
doi: 10.1364/AO.55.006480
|
7 |
BAVIRISETTI D P, DHULI R. Fusion of infrared and visible sensor images based on anisotropic diffusion and karhunen-loeve transform. IEEE Sensors Journal, 2016, 16(1): 203- 209.
doi: 10.1109/JSEN.2015.2478655
|
8 |
ZHOU Z Q, WANG B, LI S, et al. Perceptual fusion of infrared and visible images through a hybrid multi-scale decomposition with Gaussian and bilateral filters. Information Fusion, 2016, 30, 15- 26.
doi: 10.1016/j.inffus.2015.11.003
|
9 |
|
10 |
MA J Y, YU W, LIANG P W, et al. FusionGAN: a generative adversarial network for infrared and visible image fusion. Information Fusion, 2019, 48, 11- 26.
doi: 10.1016/j.inffus.2018.09.004
|
11 |
MA J Y, XU H, JIANG J J, et al. DDcGAN: a dual-discriminator conditional generative adversarial network for multi-resolution image fusion. IEEE Transactions on Image Processing, 2020, 29, 4980- 4995.
doi: 10.1109/TIP.2020.2977573
|
12 |
MA J Y, ZHANG H, SHAO Z F, et al. GANMcC: a generative adversarial network with multiclassification constraints for infrared and visible image fusion. IEEE Transactions on Instrumentation Measurement, 2021, 70, 3038013.
|
13 |
LIU J Y, FAN X, HUANG Z B, et al. Target-aware dual adversarial learning and a multi-scenario multi-modality benchmark to fuse infrared and visible for object detection[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2022: 5802-5811.
|
14 |
LIU Y, CHEN X, CHENG J, et al. Infrared and visible image fusion with convolutional neural networks. International Journal of Wavelets, Multiresolution and Information Processing, 2018, 16(3): 1850018.
doi: 10.1142/S0219691318500182
|
15 |
XU H, MA J Y, JIANG J J, et al. U2Fusion: a unified unsupervised image fusion network. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(1): 502- 518.
doi: 10.1109/TPAMI.2020.3012548
|
16 |
LI H, WU X J, KITTLER J. RFN-Net: an end-to-end residual fusion network for infrared and visible images. Information Fusion, 2021, 73, 72- 86.
doi: 10.1016/j.inffus.2021.02.023
|
17 |
TANG L F, YUAN J T, MA J Y. Image fusion in the loop of high-level vision tasks: a semantic-aware real-time infrared and visible image fusion network. Information Fusion, 2022, 82, 28- 42.
doi: 10.1016/j.inffus.2021.12.004
|
18 |
TANG L F, XIANG X Y, ZHANG H, et al. DIVFusion: darkness-free infrared and visible image fusion. Information Fusion, 2023, 91, 477- 493.
doi: 10.1016/j.inffus.2022.10.034
|
19 |
王天元, 罗晓清, 张战成. 自注意力引导的红外与可见光图像融合算法. 红外技术, 2023, 45(2): 171- 177.
URL
|
|
WANG T Y, LUO X Q, ZHANG Z C. Infrared and visible image fusion based on self-attention learning. Infrared Technology, 2023, 45(2): 171- 177.
URL
|
20 |
CHEN J, LI X J, LUO L B, et al. Infrared and visible image fusion based on target-enhanced multiscale transform decomposition. Information Sciences, 2020, 508, 64- 78.
doi: 10.1016/j.ins.2019.08.066
|
21 |
张学乾, 靳伍银. 基于光照模型的低照度图像增强. 激光杂志, 2023, 44(8): 65- 73.
URL
|
|
ZHANG X Q, JIN W Y. A low-light image enhancement method based on lighting model. Laser Journal, 2023, 44(8): 65- 73.
URL
|
22 |
MA L, MA T Y, LIU R S, et al. Toward fast, flexible, and robust low-light image enhancement[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2022: 5637-5646.
|
23 |
何乐, 李忠伟, 罗偲, 等. 基于空洞卷积与双注意力机制的红外与可见光图像融合. 红外技术, 2023, 45(7): 732- 738.
URL
|
|
HE L, LI Z W, LUO C, et al. Infrared and visible image fusion based on dilated convolution and dual attention mechanism. Infrared Technology, 2023, 45(7): 732- 738.
URL
|
24 |
JIA X Y, ZHU C, LI M Z, et al. Llvip: a visible-infrared paired dataset for low-light vision[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2021: 3496-3504.
|
25 |
ZHANG X C, YE P, XIAO G. VIFB: a visible and infrared image fusion benchmark[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 104-105.
|
26 |
孙彬, 高云翔, 诸葛吴为, 等. 可见光与红外图像融合质量评价指标分析. 中国图象图形学报, 2023, 28(1): 144- 155.
URL
|
|
SUN B, GAO Y X, ZHUGE W W, et al. Analysis of quality objective assessment metrics for visible and infrared image fusion. Journal of Image and Graphics, 2023, 28(1): 144- 155.
URL
|
27 |
LI H, WU X J. DenseFuse: a fusion approach to infrared and visible images. IEEE Transactions on Image Processing, 2019, 28(5): 2614- 2623.
doi: 10.1109/TIP.2018.2887342
|
28 |
TANG L F, YUAN J T, ZHANG H, et al. PIAFusion: a progressive infrared and visible image fusion network based on illumination aware. Information Fusion, 2022, 83, 79- 92.
|