1 |
LIU Z B, CHENG J. CB-FPN: object detection feature pyramid network based on context information and bidirectional efficient fusion. Pattern Analysis and Applications, 2023, 26(3): 1441- 1452.
doi: 10.1007/s10044-023-01173-9
|
2 |
ZHANG H L, DU Q F, QI Q Y, et al. A recursive attention-enhanced bidirectional feature pyramid network for small object detection. Multimedia Tools and Applications, 2023, 82(9): 13999- 14018.
doi: 10.1007/s11042-022-13951-4
|
3 |
LIU Z, LIN Y T, CAO Y, et al. Swin Transformer: hierarchical Vision Transformer using shifted windows[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2021: 10012-10022.
|
4 |
LIU Z, HU H, LIN Y T, et al. Swin Transformer V2: scaling up capacity and resolution[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2022: 12009-12019.
|
5 |
GUAN R W, MAN K L, ZHAO H C, et al. MAN and CAT: mix attention to NN and concatenate attention to YOLO. The Journal of Supercomputing, 2023, 79(2): 2108- 2136.
doi: 10.1007/s11227-022-04726-7
|
6 |
YU X H, GONG Y Q, JIANG N, et al. Scale match for tiny person detection[C]//Proceedings of IEEE Winter Conference on Applications of Computer Vision. Washington D. C., USA: IEEE Press, 2020: 1257-1265.
|
7 |
圣文顺, 余熊峰, 林佳燕, 等. 融合注意力与特征金字塔的小尺度目标检测算法. 计算机工程, 2024, 50(1): 242- 250.
URL
|
|
SHENG W S, YU X F, LIN J Y, et al. Small-scale object detection algorithm integrating attention and feature pyramids. Computer Engineering, 2024, 50(1): 242- 250.
URL
|
8 |
张寅, 朱桂熠, 施天俊, 等. 基于特征融合与注意力的遥感图像小目标检测. 光学学报, 2022, 42(24): 140- 150.
URL
|
|
ZHANG Y, ZHU G Y, SHI T J, et al. Small object detection in remote sensing images based on feature fusion and attention. Acta Optica Sinica, 2022, 42(24): 140- 150.
URL
|
9 |
GUO C X, FAN B, ZHANG Q, et al. AugFPN: improving multi-scale feature learning for object detection[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 12595-12604.
|
10 |
CHEN B, GHIASI G, LIU H X, et al. MnasFPN: learning latency-aware pyramid architecture for object detection on mobile devices[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 13607-13616.
|
11 |
GONG Y Q, YU X H, DING Y, et al. Effective fusion factor in FPN for tiny object detection[C]//Proceedings of IEEE Winter Conference on Applications of Computer Vision. Washington D. C., USA: IEEE Press, 2021: 1160-1168.
|
12 |
丁子轩, 俞雷, 张娟, 等. 基于深度残差自适应注意力网络的图像超分辨率重建. 计算机工程, 2023, 49(5): 231- 238.
URL
|
|
DING Z X, YU L, ZHANG J, et al. Image super-resolution reconstruction based on depth residual adaptive attention network. Computer Engineering, 2023, 49(5): 231- 238.
URL
|
13 |
范文卓, 吴涛, 许俊平, 等. 基于多分辨率特征融合的任意尺度图像超分辨率重建. 计算机工程, 2023, 49(9): 217- 225.
URL
|
|
FAN W Z, WU T, XU J P, et al. Super-resolution reconstruction of arbitrary scale images based on multi-resolution feature fusion. Computer Engineering, 2023, 49(9): 217- 225.
URL
|
14 |
NOH J, BAE W, LEE W, et al. Better to follow, follow to be better: towards precise supervision of feature super-resolution for small object detection[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2019: 9725-9734.
|
15 |
COURTRAI L, PHAM M T, LEFÈVRE S. Small object detection in remote sensing images based on super-resolution with auxiliary generative adversarial networks. Remote Sensing, 2020, 12(19): 3152.
doi: 10.3390/rs12193152
|
16 |
WANG L, LI D, ZHU Y S, et al. Dual super-resolution learning for semantic segmentation[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 3774-3783.
|
17 |
WU D, LIAO M W, ZHANG W T, et al. YOLOP: you only look once for panoptic driving perception. Machine Intelligence Research, 2022, 19(6): 550- 562.
doi: 10.1007/s11633-022-1339-y
|
18 |
SRINIVAS A, LIN T Y, PARMAR N, et al. Bottleneck transformers for visual recognition[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2021: 16519-16529.
|
19 |
|
20 |
LI C, LI L, JIANG H, et al. YOLOv6: a single-stage object detection framework for industrial applications[EB/OL]. [2023-11-10]. https://arxiv.org/abs/2209.02976.
|
21 |
|
22 |
WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2023: 7464-7475.
|
23 |
XU D Q, WU Y Q. An efficient detector with auxiliary network for remote sensing object detection. Electronics, 2023, 12(21): 4448.
doi: 10.3390/electronics12214448
|
24 |
张惊雷, 宫文浩, 贾鑫. 基于自引导注意力的双模态校准融合目标检测算法. 模式识别与人工智能, 2023, 36(9): 793- 805.
URL
|
|
ZHANG J L, GONG W H, JIA X. Object detection algorithm with dual-modal rectification fusion based on self-guided attention. Pattern Recognition and Artificial Intelligence, 2023, 36(9): 793- 805.
URL
|
25 |
|