1 |
|
2 |
李嘉新, 侯进, 盛博莹, 等. 基于改进YOLOv5的遥感小目标检测网络. 计算机工程, 2023, 49(9): 256- 264.
doi: 10.19678/j.issn.1000-3428.0065935
|
|
LI J X, HOU J, SHENG B Y, et al. Remote sensing small object detection network based on improved YOLOv5. Computer Engineering, 2023, 49(9): 256- 264.
doi: 10.19678/j.issn.1000-3428.0065935
|
3 |
张华美, 张皎洁. 基于人工智能的脱机手写数字识别研究综述. 南京邮电大学学报(自然科学版), 2021, 41(5): 83- 91.
|
|
ZHANG H M, ZHANG J J. Summary of offline handwritten digit recognition research based on artificial intelligence. Journal of Nanjing University of Posts and Telecommunications (Natural Science Edition), 2021, 41(5): 83- 91.
|
4 |
DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2022: 886-893.
|
5 |
|
6 |
|
7 |
REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137- 1149.
doi: 10.1109/TPAMI.2016.2577031
|
8 |
HE K M, GKIOXARI G, DOLLAR P, et al. Mask R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision. Washington D.C., USA: IEEE Press, 2017: 2961-2969.
|
9 |
|
10 |
|
11 |
|
12 |
ZHAO J W, TIAN G Z, QIU C, et al. Weed detection in potato fields based on improved YOLOv4: optimal speed and accuracy of weed detection in potato fields. Electronics, 2022, 11(22): 3709.
doi: 10.3390/electronics11223709
|
13 |
|
14 |
SHEN C, MA C, GAO W. Multiple attention mechanism enhanced YOLOX for remote sensing object detection. Sensors (Basel, Switzerland), 2023, 23(3): 1261.
doi: 10.3390/s23031261
|
15 |
WU Y Y, YANG T, TANG Y. Research on road object detection algorithm based on improved YOLOX[C]//Proceedings of the 3rd International Conference on Neural Networks, Information and Communication Engineering. Washington D.C., USA: IEEE Press, 2023: 271-275.
|
16 |
张正, 白佳华, 田青. 基于单级特征金字塔的图像旋转目标检测. 计算机工程与应用, 2023, 59(15): 235- 242.
|
|
ZHANG Z, BAI J H, TIAN Q. Image rotating objects detection based on single level feature pyramid. Computer Engineering and Applications, 2023, 59(15): 235- 242.
|
17 |
LIU J, CAI Q Q, ZOU F M, et al. BiGA-YOLO: a lightweight object detection network based on YOLOv5 for autonomous driving. Electronics, 2023, 12(12): 2745.
doi: 10.3390/electronics12122745
|
18 |
CHEN J, MAI H S, LUO L B, et al. Effective feature fusion network in BiFPN for small object detection[C]//Proceedings of the IEEE International Conference on Image Processing. Washington D.C., USA: IEEE Press, 2021: 699-703.
|
19 |
陈皋, 王卫华, 林丹丹. 基于无预训练卷积神经网络的红外车辆目标检测. 红外技术, 2021, 43(4): 342- 348.
|
|
CHEN G, WANG W H, LIN D D. Infrared vehicle target detection based on convolutional neural network without pre-training. Infrared Technology, 2021, 43(4): 342- 348.
|
20 |
徐胜军, 荆扬, 李海涛, 等. 渐进式多粒度ResNet车型识别网络. 光电工程, 2023, 50(7): 36- 51.
|
|
XU S J, JING Y, LI H T, et al. Progressive multi-granularity ResNet vehicle recognition network. Opto-Electronic Engineering, 2023, 50(7): 36- 51.
|
21 |
朱凯斌, 吕红明, 秦彦彬. 基于改进YOLOv5算法的车辆目标检测. 自动化与仪表, 2024, 39(5): 78- 83.
|
|
ZHU K B, LÜ H M, QIN Y B. Vehicle target detection based on improved YOLOv5 algorithm. Automation & Instrumentation, 2024, 39(5): 78- 83.
|
22 |
REZATOFIGHI H, TSOI N, GWAK J, et al. Generalized intersection over union: a metric and a loss for bounding box regression[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2019: 15-21.
|
23 |
LIU Y C, SHAO Z R, HOFFMANN N. Global attention mechanism: retain information to enhance channel-spatial interactions[EB/OL]. [2024-04-05]. http://arxiv.org/abs/2112.05561v1.
|
24 |
WANG C Y, LIAO H Y, WU Y H, et al. CSPNet: a new backbone that can enhance learning capability of CNN[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Washington D.C., USA: IEEE Press, 2020: 390-391.
|
25 |
DING X H, ZHANG X Y, HAN J G, et al. Scaling up your kernels to 31×31: revisiting large kernel design in CNNs[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2022: 11963-11975.
|
26 |
HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2018: 7132-7141.
|
27 |
|
28 |
|
29 |
LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2018: 8759-8768.
|
30 |
TAN M X, PANG R M, LE Q V. EfficientDet: scalable and efficient object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2020: 10781-10790.
|