[1] 党帅涛, 柯坚, 吴文海, 等. 基于PCM和纹理特征的铁路绝缘子污秽程度异常检测[J]. 电瓷避雷器, 2019(2):197-201. DANG S T, KE J, WU W H, et al. The contamination status anomaly detection of railway insulator based on PCM and texture feature[J]. Insulators and Surge Arresters, 2019(2):197-201.(in Chinese) [2] 赵振兵, 徐磊, 戚银城, 等. 基于Hough检测和C-V模型的航拍绝缘子自动协同分割方法[J]. 仪器仪表学报, 2016, 37(2):395-403. ZHAO Z B, XU L, QI Y C, et al. Automatic co-segmentation method for aerial insulator based on Hough detection and C-V model[J]. Chinese Journal of Scientific Instrument, 2016, 37(2):395-403.(in Chinese) [3] 赵文清, 张海明, 徐敏夫. 面向改进尺度缩放网络的绝缘子识别[J]. 中国图象图形学报, 2021, 26(11):2561-2570. ZHAO W Q, ZHANG H M, XU M F. Insulator recognition based on an improved scale-transferrable network[J]. Journal of Image and Graphics, 2021, 26(11):2561-2570.(in Chinese) [4] 李发光,伊力哈木·亚尔买买提.基于改进CenterNet的航拍绝缘子缺陷实时检测模型[J].计算机科学,2022,49(5):84-91. LI F G, Ilham Yarmat. Real-time detection model of aerial insulator defects based on improved CenterNet[J].Computer Science,2022,49(5):84-91. (in Chinese) [5] 何正伟. 基于语义分割的接触网关键设备检索和定位[D]. 成都:西南交通大学, 2019. HE Z W. Retrieval and location of key device based on semantic segmentation in catenary[D].Chengdu:Southwest Jiaotong University, 2019. (in Chinese) [6] 徐昌贵, 张波, 高建威, 等. FCOSR:一种无锚框的SAR图像任意朝向船舶目标检测网络[J]. 雷达学报, 2022, 11(3):335-346. XU C G, ZHANG B, GAO J W, et al. FCOSR:an anchor-free method for arbitrary-oriented ship detection in SAR images[J]. Journal of Radars, 2022, 11(3):335-346.(in Chinese) [7] 宋怀波,焦义涛,华志新,等.基于YOLOv5-OBB与CT的浸种玉米胚乳裂纹检测[J].农业机械学报,2023,54(3):394-401,439. SONG H B, JIAO Y T, HUA Z X, et al. Crack detection of endosperm in soaked maize based on YOLOv5-OBB and CT[J].Transactions of the Chinese Society for Agricultural Machinery,2023,54(3):394-401,439. (in Chinese) [8] 孙顺远, 陈浩. 基于旋转目标检测的指针式仪表示数识别方法[J]. 仪表技术与传感器, 2023(3):18-23, 32. SUN S Y, CHEN H. Reading recognition method of pointer-type meters based on rotating object detection[J]. Instrument Technique and Sensor, 2023(3):18-23, 32.(in Chinese) [9] ZHU X K, LYU S C, WANG X, et al. TPH-YOLOv5:improved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios[C]//Proceedings of IEEE/CVF International Conference on Computer Vision Workshops. Washington D.C., USA:IEEE Press, 2021:2778-2788. [10] 张宸嘉, 朱磊, 俞璐. 卷积神经网络中的注意力机制综述[J]. 计算机工程与应用, 2021, 57(20):64-72. ZHANG C J, ZHU L, YU L. Review of attention mechanism in convolutional neural networks[J]. Computer Engineering and Applications, 2021, 57(20):64-72.(in Chinese) [11] LI X, WANG W H, HU X L, et al. Selective kernel networks[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA:IEEE Press, 2019:510-519. [12] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA:IEEE Press, 2018:7132-7141. [13] WANG Q L, WU B G, ZHU P F, et al. ECA-Net:efficient channel attention for deep convolutional neural networks[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Washington D.C., USA:IEEE Press, 2020:11531-11539. [14] MAX J, SIMONYAN K, ZISSERMAN A. Spatial transformer networks[EB/OL].[2023-05-11]. https://arxiv.org/abs/1506.02025. [15] WOO S, PARK J, LEE J Y, et al. CBAM:convolutional block attention module[M]. Berlin, Germany:Springer International Publishing, 2018. [16] 于海洋,景鹏,张文涛,等.基于残差和注意力机制的道路裂缝检测U-Net改进模型[J]. 计算机工程, 2023, 49(6):265-273. YU H Y, JING P, ZHANG W T, et al. U-Net improved model of road crack detection based on residual and attention mechanism[J].Computer Engineering, 2023, 49(6):265-273. (in Chinese) [17] WANG X L, GIRSHICK R, GUPTA A, et al. Non-local neural networks[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA:IEEE Press, 2018:7794-7803. [18] SANDLER M, HOWARD A, ZHU M L, et al. MobileNetV2:inverted residuals and linear bottlenecks[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA:IEEE Press, 2018:4510-4520. [19] HUANG Z L, WANG X G, HUANG L C, et al. CCNet:criss-cross attention for semantic segmentation[EB/OL].[2023-05-11]. https://arxiv.org/abs/1811.11721. [20] DING X H, ZHANG X Y, MA N N, et al. RepVGG:making VGG-style ConvNets great again[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA:IEEE Press, 2021:13728-13737. [21] 齐咏生, 杜晓旭, 朱俊峰, 等. 基于增强型轻量深度网络的牧区牲畜高效检测[J]. 计算机工程, 2023, 49(7):278-287. QI Y S, DU X X, ZHU J F, et al. Efficient livestock detection in grazing areas based on enhanced lightweight deep network[J]. Computer Engineering, 2023, 49(7):278-287. (in Chinese) [22] HAN J M, DING J, LI J, et al. Align deep features for oriented object detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:1-11. [23] 胡凯旋. 基于YOLOv5的航拍图像旋转目标检测算法[D]. 成都:电子科技大学, 2022. HU K X. Oriented object detector in aerial images based on YOLOv5[D]. Chengdu:University of Electronic Science and Technology of China, 2022. (in Chinese) [24] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN:towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149. [25] TAN M X, LE Q V. EfficientNet:rethinking model scaling for convolutional neural networks[C]//Proceedings of the 36th International Conference on Machine Learning. Washington D.C., USA:IEEE Press, 2019:6105-6114. [26] ZHANG H, LI F, LIU S L, et al. DINO:DETR with improved denoising anchor boxes for end-to-end object detection[EB/OL].[2023-05-11]. https://arxiv.org/abs/2203.03605. |