| 1 | SUCHANEK F M, KASNECI G, WEIKUM G. Yago: a core of semantic knowledge[C]//Proceedings of the 16th International Conference on World Wide Web. New York, USA: ACM Press, 2007: 697-706. | 
																													
																						| 2 | BOLLACKER K, EVANS C, PARITOSH P, et al. Freebase: a collaboratively created graph database for structuring human knowledge[C]//Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data. New York, USA: ACM Press, 2008: 1247-1250. | 
																													
																						| 3 |  AUER S ,  BIZER C ,  KOBILAROV G , et al.  DBpedia: a nucleus for a Web of open data. Berlin, Germany: Springer, 2007. | 
																													
																						| 4 |  VRANDEČIĆ D ,  KRÖTZSCH M .  Wikidata. Communications of the ACM, 2014, 57 (10): 78- 85.  doi: 10.1145/2629489
 | 
																													
																						| 5 |  CARLSON A ,  BETTERIDGE J ,  KISIEL B , et al.  Toward an architecture for never-ending language learning. Artificial Intelligence, 2010, 24 (1): 1306- 1313.  URL
 | 
																													
																						| 6 | ALHUSSIEN I, CAMBRIA E, ZHANG N S. Semantically enhanced models for commonsense knowledge acquisition[C]//Proceedings of IEEE International Conference on Data Mining. Washington D. C., USA: IEEE Press, 2018: 1014-1021. | 
																													
																						| 7 | 王萌, 王昊奋, 李博涵, 等.  新一代知识图谱关键技术综述. 计算机研究与发展, 2022, 59 (9): 1947- 1965. | 
																													
																						|  |  WANG M ,  WANG H F ,  LI B H , et al.  Survey on key technologies of new generation knowledge graph. Journal of Computer Research and Development, 2022, 59 (9): 1947- 1965. | 
																													
																						| 8 | EHRLINGER L, WÖSS W. Towards a definition of knowledge graphs[C]//Proceedings of the 12th International Conference on Semantic Systems. Washington D. C., USA: IEEE Press, 2016: 456-467. | 
																													
																						| 9 |  ZOU Y Y ,  FININ T ,  CHEN H .  F-OWL: an inference engine for semantic Web. Berlin, Germany: Springer, 2004. | 
																													
																						| 10 |  BVHMANN L ,  LEHMANN J .  Pattern based knowledge base enrichment. Berlin, Germany: Springer, 2013. | 
																													
																						| 11 | JIANG S P, LOWD D, DOU D J. Learning to refine an automatically extracted knowledge base using Markov logic[C]//Proceedings of the 12th IEEE International Conference on Data Mining. Washington D. C., USA: IEEE Press, 2012: 912-917. | 
																													
																						| 12 | GALÁRRAGA L A, TEFLIOUDI C, HOSE K, et al. AMIE: association rule mining under incomplete evidence in ontological knowledge bases[C]//Proceedings of the 22nd International Conference on World Wide Web. Washington D. C., USA: IEEE Press, 2013: 413-422. | 
																													
																						| 13 |  GALÁRRAGA L ,  TEFLIOUDI C ,  HOSE K , et al.  Fast rule mining in ontological knowledge bases with AMIE+. The VLDB Journal, 2015, 24 (6): 707- 730.  doi: 10.1007/s00778-015-0394-1
 | 
																													
																						| 14 | KIMMIG A, BACH S, BROECHELER M, et al. A short introduction to probabilistic soft logic[C]//Proceedings of NIPS'12. Cambridge, USA: MIT Press, 2012: 1-4. | 
																													
																						| 15 | QU M, CHEN J, XHONNEUX L P, et al. RNNLogic: learning logic rules for reasoning on knowledge graphs[C]//Proceedings of 2021 International Conference on Learning Representations. Washington D. C., USA: IEEE Press, 2021: 762-775. | 
																													
																						| 16 | GARDNER M, TALUKDAR P P, KISIEL B, et al. Improving learning and inference in a large knowledge-base using latent syntactic cues[C]//Proceedings of 2013 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA: Association for Computational Linguistics, 2013: 833-838. | 
																													
																						| 17 | GARDNER M, MITCHELL T. Efficient and expressive knowledge base completion using subgraph feature extraction[C]//Proceedings of Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA: Association for Computational Linguistics, 2015: 1488-1498. | 
																													
																						| 18 | MEILICKE C, CHEKOL M, FINK M, et al. Reinforced anytime bottom up rule learning for knowledge graph completion[EB/OL]. [2023-11-20]. https://arxiv.org/pdf/2004.04412 . | 
																													
																						| 19 | BORDES A, USUNIER N, GARCIA-DURÁN A, et al. Translating embeddings for modeling multi-relational data[C]//Proceedings of Advances in Neural Information Processing Systems. Cambridge, USA: MIT Press, 2013: 246-257. | 
																													
																						| 20 |  WANG Z ,  ZHANG J W ,  FENG J L , et al.  Knowledge graph embedding by translating on hyperplanes. Artificial Intelligence, 2014, 28 (1): 468- 477.  URL
 | 
																													
																						| 21 | SUN Z, DENG Z H, NIE J Y, et al. RotatE: knowledge graph embedding by relational rotation in complex space[C]//Proceedings of the 7th International Conference on Learning Representations. Washington D. C., USA: IEEE Press, 2019: 332-345. | 
																													
																						| 22 | ZHANG S, TAY Y, YAO L, et al. Quaternion knowledge graph embeddings[C]//Proceedings of Advances in Neural Information Processing Systems. Cambridge, USA: MIT Press, 2019: 323-335. | 
																													
																						| 23 | NICKEL M, TRESP V, KRIEGEL H P. A three-way model for collective learning on multi-relational data[C]//Proceedings of the 28th International Conference on Machine Learning. Washington D. C., USA: IEEE Press, 2011: 809-816. | 
																													
																						| 24 | YANG B S, YIH W T, HE X D, et al. Embedding entities and relations for learning and inference in knowledge bases[C]//Proceedings of the 3rd International Conference on Learning Representations. Washington D. C., USA: IEEE Press, 2015: 532-541. | 
																													
																						| 25 | TROUILLON T, WELBL J, RIEDEL S, et al. Complex embeddings for simple link prediction[C]//Proceedings of the 33rd International Conference on Machine Learning. Washington D. C., USA: IEEE Press, 2016: 3021-3032. | 
																													
																						| 26 |  | 
																													
																						| 27 |  | 
																													
																						| 28 | NGUYEN D Q, VU T, NGUYEN T D, et al. A capsule network-based embedding model for knowledge graph completion and search personalization[C]//Proceedings of NAACL'19. Stroudsburg, USA: Association for Computational Linguistics, 2019: 2180-2189. | 
																													
																						| 29 |  VASHISHTH S ,  SANYAL S ,  NITIN V , et al.  InteractE: improving convolution-based knowledge graph embeddings by increasing feature interactions. Artificial Intelligence, 2020, 34 (3): 3009- 3016.  URL
 | 
																													
																						| 30 | DAS R, NEELAKANTAN A, BELANGER D, et al. Chains of reasoning over entities, relations, and text using recurrent neural networks[C]//Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics. Stroudsburg, USA: Association for Computational Linguistics, 2017: 132-141. | 
																													
																						| 31 | GUO L, SUN Z, HU W. Learning to exploit long-term relational dependencies in knowledge graphs[C]//Proceedings of the 36th International Conference on Machine Learning. Washington D. C., USA: IEEE Press, 2019: 2505-2514. | 
																													
																						| 32 |  SCHLICHTKRULL M ,  KIPF T N ,  BLOEM P , et al.  Modeling relational data with graph convolutional networks. Berlin, Germany: Springer, 2018: 593- 607. | 
																													
																						| 33 |  SHANG C ,  TANG Y ,  HUANG J , et al.  End-to-end structure-aware convolutional networks for knowledge base completion. Artificial Intelligence, 2019, 33 (1): 3060- 3067.  URL
 | 
																													
																						| 34 | VASHISHTH S, SANYAL S, NITIN V, et al. Composition-based multi-relational graph convolutional networks[C]//Proceedings of International Conference on Learning Representations. Washington D. C., USA: IEEE Press, 2020: 682-693. | 
																													
																						| 35 |  | 
																													
																						| 36 | KIM B, HONG T, KO Y, et al. Multi-task learning for knowledge graph completion with pre-trained language models[C]//Proceedings of the 28th International Conference on Computational Linguistics. Stroudsburg, USA: International Committee on Computational Linguistics, 2020: 1737-1743. | 
																													
																						| 37 |  | 
																													
																						| 38 | XIONG W H, HOANG T, WANG W Y. DeepPath: a reinforcement learning method for knowledge graph reasoning[C]//Proceedings of International Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA: Association for Computational Linguistics, 2017: 332-345. | 
																													
																						| 39 | DAS R, DHULIAWALA S, ZAHEER M, et al. Go for a walk and arrive at the answer: reasoning over paths in knowledge bases using reinforcement learning[EB/OL]. [2023-11-20]. https://arxiv.org/pdf/1711.05851 . | 
																													
																						| 40 | LIN X V, SOCHER R, XIONG C M. Multi-hop knowledge graph reasoning with reward shaping[C]//Proceedings of 2018 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA: Association for Computational Linguistics, 2018: 3243-3253. | 
																													
																						| 41 |  MEILICKE C ,  FINK M ,  WANG Y J , et al.  Fine-grained evaluation of rule- and embedding-based systems for knowledge graph completion. Berlin, Germany: Springer, 2018. | 
																													
																						| 42 | GUO S, WANG Q, WANG L H, et al. Jointly embedding knowledge graphs and logical rules[C]//Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA: Association for Computational Linguistics, 2016: 192-202. | 
																													
																						| 43 |  GUO S ,  WANG Q ,  WANG L H , et al.  Knowledge graph embedding with iterative guidance from soft rules. Artificial Intelligence, 2018, 32 (1): 335- 346.  URL
 | 
																													
																						| 44 | ZHANG W, PAUDEL B, WANG L, et al. Iteratively learning embeddings and rules for knowledge graph reasoning[C]//Proceedings of World Wide Web Conference. New York, USA: ACM Press, 2019: 2366-2377. | 
																													
																						| 45 | QU M, TANG J. Probabilistic logic neural networks for reasoning[C]//Proceedings of Advances in Neural Information Processing Systems. Cambridge, USA: MIT Press, 2019: 542-551. | 
																													
																						| 46 |  EVANS R ,  GREFENSTETTE E .  Learning explanatory rules from noisy data. Journal of Artificial Intelligence Research, 2018, 61, 51- 64.  URL
 | 
																													
																						| 47 | YANG F, YANG Z, COHEN W W. Differentiable learning of logical rules for knowledge base reasoning[C]//Proceedings of Advances in Neural Information Processing Systems. Cambridge, USA: MIT Press, 2017: 465-476. | 
																													
																						| 48 |  | 
																													
																						| 49 | WEI Z Y, ZHAO J, LIU K, et al. Large-scale knowledge base completion: inferring via grounding network sampling over selected instances[C]//Proceedings of the 24th ACM International on Conference on Information and Knowledge Management. New York, USA: ACM Press, 2015: 1331-1340. | 
																													
																						| 50 | ROCKTÄSCHEL T, SINGH S, RIEDEL S. Injecting logical background knowledge into embeddings for relation extraction[C]//Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg, USA: Association for Computational Linguistics, 2015: 1119-1129. | 
																													
																						| 51 |  | 
																													
																						| 52 | HU Z T, MA X Z, LIU Z Z, et al. Harnessing deep neural networks with logic rules[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, USA: Association for Computational Linguistics, 2016: 2410-2420. | 
																													
																						| 53 | TOUTANOVA K, CHEN D Q. Observed versus latent features for knowledge base and text inference[C]//Proceedings of the 3rd Workshop on Continuous Vector Space Models and their Compositionality. Stroudsburg, USA: Association for Computational Linguistics, 2015: 57-66. | 
																													
																						| 54 | KOK S, DOMINGOS P. Statistical predicate invention[C]//Proceedings of the 24th International Conference on Machine Learning. New York, USA: ACM Press, 2007: 433-440. | 
																													
																						| 55 |  MILLER G A .  WordNet. Communications of the ACM, 1995, 38 (11): 39- 41.  doi: 10.1145/219717.219748
 | 
																													
																						| 56 |  LAO N ,  COHEN W W .  Relational retrieval using a combination of path-constrained random walks. Machine Learning, 2010, 81 (1): 53- 67.  doi: 10.1007/s10994-010-5205-8
 | 
																													
																						| 57 |  | 
																													
																						| 58 | SADEGHIAN A, ARMANDPOUR M, DING P, et al. DRUM: end-to-end differentiable rule mining on knowledge graphs[C]//Proceedings of Advances in Neural Information Processing Systems. Cambridge, USA: MIT Press, 2019: 135-143. | 
																													
																						| 59 |  |