1 |
PALVIA S, AERON P, GUPTA P, et al. Online education: worldwide status, challenges, trends, and implications. Journal of Global Information Technology Management, 2018, 21(4): 233- 241.
doi: 10.1080/1097198X.2018.1542262
|
2 |
ABDELRAHMAN G, WANG Q, NUNES B. Knowledge tracing: a survey. ACM Computing Surveys, 2023, 55(11): 1- 37.
|
3 |
CHOI Y, LEE Y, SHIN D, et al. EdNet: a large-scale hierarchical dataset in education[C]//Proceedings of the 21st International Conference on Artificial Intelligence in Education. Berlin, Germany: Springer, 2020: 69-73.
|
4 |
ADOMAVICIUS G, TUZHILIN A. Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering, 2005, 17(6): 734- 749.
doi: 10.1109/TKDE.2005.99
|
5 |
BULATHWELA S, PEREZ-ORTIZ M, YILMAZ E, et al. TrueLearn: a family of Bayesian algorithms to match lifelong learners to open educational resources[C]//Proceedings of the AAAI Conference on Artificial Intelligence. New York, USA: AAAI Press, 2020: 565-573.
|
6 |
吴正洋, 汤庸, 刘海. 个性化学习推荐研究综述. 计算机科学与探索, 2022, 16(1): 21- 40.
URL
|
|
WU Z Y, TANG Y, LIU H. Survey of personalized learning recommendation. Journal of Frontiers of Computer Science and Technology, 2022, 16(1): 21- 40.
URL
|
7 |
WAN S S, NIU Z D. A hybrid e-learning recommendation approach based on learners' influence propagation. IEEE Transactions on Knowledge and Data Engineering, 2019, 32(5): 827- 840.
|
8 |
ZHANG S, YAO L N, SUN A X, et al. Deep learning based recommender system. ACM Computing Surveys, 2019, 52(1): 1- 38.
|
9 |
WANG H W, ZHAO M, XIE X, et al. Knowledge graph convolutional networks for recommender systems[C]//Proceedings of the World Wide Web Conference. New York, USA: ACM Press, 2019: 3307-3313.
|
10 |
SHIMIZU R, MATSUTANI M, GOTO M. An explainable recommendation framework based on an improved knowledge graph attention network with massive volumes of side information. Knowledge-Based Systems, 2022, 239, 107970.
doi: 10.1016/j.knosys.2021.107970
|
11 |
BING Q Y, ZHU Q N, DOU Z C. Cognition-aware knowledge graph reasoning for explainable recommendation[C]//Proceedings of the 16th ACM International Conference on Web Search and Data Mining. New York, USA: ACM Press, 2023: 402-410.
|
12 |
WANG F, ZHANG L L, CHEN X C, et al. A personalized self-learning system based on knowledge graph and differential evolution algorithm. Concurrency and Computation: Practice and Experience, 2022, 34(8): e6190.
doi: 10.1002/cpe.6190
|
13 |
ZHAO Y Y, WANG X, CHEN J W, et al. Time-aware path reasoning on knowledge graph for recommendation. ACM Transactions on Information Systems, 2022, 41(2): 1- 26.
|
14 |
LI P, LI T C, WANG X, et al. Scholar recommendation based on high-order propagation of knowledge graphs. International Journal on Semantic Web and Information Systems, 2022, 18(1): 1- 19.
|
15 |
GUO Q Y, ZHUANG F Z, QIN C, et al. A survey on knowledge graph-based recommender systems. IEEE Transactions on Knowledge and Data Engineering, 2022, 34(8): 3549- 3568.
doi: 10.1109/TKDE.2020.3028705
|
16 |
XU C, HUANG H L, YING X T, et al. HGNN: hierarchical graph neural network for predicting the classification of price-limit-hitting stocks. Information Sciences, 2022, 607, 783- 798.
doi: 10.1016/j.ins.2022.06.010
|
17 |
MA T, HUANG L T, LU Q Q, et al. KR-GCN: knowledge-aware reasoning with graph convolution network for explainable recommendation. ACM Transactions on Information Systems, 2023, 41(1): 1- 27.
|
18 |
GONG J B, WANG S, WANG J L, et al. Attentional graph convolutional networks for knowledge concept recommendation in MOOCs in a heterogeneous view[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA: ACM Press, 2020: 79-88.
|
19 |
SHI J K, YANG K. MPL-TransKR: multi-perspective learning based on transformer knowledge graph enhanced recommendation. IEEE Access, 2023, 11, 40761- 40769.
doi: 10.1109/ACCESS.2023.3266835
|
20 |
WU B C, KANG Y, ZAN D G, et al. Hierarchical and contrastive representation learning for knowledge-aware recommendation[C]//Proceedings of the IEEE International Conference on Multimedia and Expo. Washington D. C., USA: IEEE Press, 2023: 1050-1055.
|
21 |
YANG Y H, HUANG C, XIA L H, et al. Knowledge graph contrastive learning for recommendation[C]//Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA: ACM Press, 2022: 1434-1443.
|
22 |
CHEN J, FAN D Q, QIAN X R, et al. KGCN-LSTM: a graph convolutional network considering knowledge fusion of point of interest for vehicle trajectory prediction. IET Intelligent Transport Systems, 2023, 17(6): 1087- 1103.
doi: 10.1049/itr2.12341
|
23 |
BOUGHAREB R, SERIDI H, BELDJOUDI S. Explainable recommendation based on weighted knowledge graphs and graph convolutional networks. Journal of Information & Knowledge Management, 2023, 22(3): 2250098.
|
24 |
BURT R S. Structural holes[M]. Cambridge, USA: Harvard University Press, 1992: 54-58.
|
25 |
WANG H W, ZHANG F Z, WANG J L, et al. RippleNet: propagating user preferences on the knowledge graph for recommender systems[C]//Proceedings of the 27th ACM International Conference on Information and Knowledge Management. New York, USA: ACM Press, 2018: 417-426.
|
26 |
WANG H W, ZHANG F Z, ZHANG M D, et al. Knowledge-aware graph neural networks with label smoothness regularization for recommender systems[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York, USA: ACM Press, 2019: 968-977.
|