作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2024, Vol. 50 ›› Issue (9): 153-160. doi: 10.19678/j.issn.1000-3428.0068409

• 人工智能与模式识别 • 上一篇    下一篇

基于知识图谱卷积网络的学习资源推荐

汤志康1, 武毓琦1, 李春英1,2,*(), 汤庸3   

  1. 1. 广东技术师范大学计算机科学学院, 广东 广州 510665
    2. 广东技术师范大学广东省知识产权大数据重点实验室, 广东 广州 510665
    3. 华南师范大学计算机学院, 广东 广州 510631
  • 收稿日期:2023-09-17 出版日期:2024-09-15 发布日期:2024-03-06
  • 通讯作者: 李春英
  • 基金资助:
    国家自然科学基金(61807009); 广东省普通高校重点领域专项(2023ZDZX1009); 广东省知识产权大数据重点实验室开放课题; 广东技术师范大学智能教育联合实验室项目(GSZLGC2023004)

Recommendation of Learning Resource Based on Knowledge Graph Convolutional Network

TANG Zhikang1, WU Yuqi1, LI Chunying1,2,*(), TANG Yong3   

  1. 1. School of Computer Science, Guangdong Polytechnic Normal University, Guangzhou 510665, Guangdong, China
    2. Guangdong Provincial Key Laboratory of Intellectual Property & Big Data, Guangdong Polytechnic Normal University, Guangzhou 510665, Guangdong, China
    3. School of Computer, South China Normal University, Guangzhou 510631, Guangdong, China
  • Received:2023-09-17 Online:2024-09-15 Published:2024-03-06
  • Contact: LI Chunying

摘要:

针对现有知识图谱卷积网络(KGCN)推荐模型随机采样选择邻域容易导致推荐结果不稳定的缺点, 构建基于结构洞和共同邻居的重要性排序采样模型(SHCN), 结合KGCN处理高维异构数据的优势, 提出基于结构洞和共同邻居的KGCN推荐模型(KGCN-SHCN)。首先使用SHCN模型对知识图谱中的实体邻域进行排序采样, 其次根据图卷积网络将实体信息与邻域采样信息进行聚合得到学习资源的特征表示, 最后将学习者的特征表示和学习资源的特征表示依据预测函数得到交互概率。在3个学习资源数据集上的实验结果表明, 所提模型尤其是使用求和聚合(Sum)方式时, 评价指标AUC和ACC总体优于KGCN、RippleNet等基于知识图谱的推荐模型, 证明了所提KGCN-SHCN模型的有效性。

关键词: 知识图谱, 图卷积网络, 图采样, 推荐算法, 学习资源

Abstract:

Aiming at random sampling and the selection of neighborhoods that may lead to unstable recommendation results in existing Knowledge Graph Convolutional Network(KGCN) models, this study constructs a sampling model for Structural Holes and Common Neighbors(SHCN) importance ranking. SHCN leverages the advantages of KGCN in processing higher-dimensional heterogeneous data. This study proposes a KGCN recommendation model based on SHCN, named KGCN-SHCN. First, the SHCN sampling method is used to sort the receiving domain of each entity in a Knowledge Graph(KG). Then, the entity information and information collected from the entity neighborhood are aggregated according to a Graph Convolutional Network(GCN) to obtain the feature representation of the learning resources. Finally, the feature representations of learners and learning resources are obtained using a prediction function to obtain the interaction probabilities. Experiments are conducted on three datasets, and the experimental results show that the proposed model, especially using the sum aggregation, yields better results in terms of the AUC and ACC evaluation indexes than the KGCN, RippleNet, and other recommendation models based on KG. These results prove that the proposed model is superior.

Key words: Knowledge Graph(KG), Graph Convolutional Network(GCN), graph sampling, recommendation algorithm, learning resource