1 |
YANG M L, HUANG F H, LÜ X B. A feature learning approach for face recognition with robustness to noisy label based on top-N prediction. Neurocomputing, 2019, 330, 48- 55.
doi: 10.1016/j.neucom.2018.10.075
|
2 |
CHEN W S, LIU J M, PAN B B, et al. Face recognition using nonnegative matrix factorization with fractional power inner product kernel. Neurocomputing, 2019, 348, 40- 53.
doi: 10.1016/j.neucom.2018.06.083
|
3 |
WRIGHT J, YANG A Y, GANESH A, et al. Robust face recognition via sparse representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(2): 210- 227.
doi: 10.1109/TPAMI.2008.79
|
4 |
ZHANG L, YANG M, FENG X C. Sparse representation or collaborative representation: which helps face recognition?[C]//Proceedings of the International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2011: 471-478.
|
5 |
HUANG J, NIE F P, HUANG H, et al. Supervised and projected sparse coding for image classification. Proceedings of the AAAI Conference on Artificial Intelligence, 2013, 27(1): 438- 444.
doi: 10.1609/aaai.v27i1.8691
|
6 |
YU Y F, DAI D Q, REN C X, et al. Discriminative multi-scale sparse coding for single-sample face recognition with occlusion. Pattern Recognition, 2017, 66, 302- 312.
doi: 10.1016/j.patcog.2017.01.021
|
7 |
YANG M, ZHANG L, YANG J, et al. Robust sparse coding for face recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2011: 625-632.
|
8 |
YANG J, LUO L, QIAN J J, et al. Nuclear norm based matrix regression with applications to face recognition with occlusion and illumination changes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(1): 156- 171.
doi: 10.1109/TPAMI.2016.2535218
|
9 |
CHEN Z, WU X J, KITTLER J. A sparse regularized nuclear norm based matrix regression for face recognition with contiguous occlusion. Pattern Recognition Letters, 2019, 125, 494- 499.
doi: 10.1016/j.patrec.2019.05.018
|
10 |
LI Q, HE H H, LAI H, et al. Enhanced nuclear norm based matrix regression for occluded face recognition. Pattern Recognition, 2022, 126, 108585.
doi: 10.1016/j.patcog.2022.108585
|
11 |
SU T T, FENG D Z, WANG M, et al. Dual discriminative low-rank projection learning for robust image classification. IEEE Transactions on Circuits and Systems for Video Technology, 2023, 33(12): 7708- 7722.
doi: 10.1109/TCSVT.2023.3278571
|
12 |
XIE Y, GU S H, LIU Y, et al. Weighted schatten p-norm minimization for image denoising and background subtraction. IEEE Transactions on Image Processing, 2016, 25(10): 4842- 4857.
doi: 10.1109/TIP.2016.2599290
|
13 |
XIE J C, YANG J, QIAN J J, et al. Robust nuclear norm-based matrix regression with applications to robust face recognition. IEEE Transactions on Image Processing, 2017, 26(5): 2286- 2295.
doi: 10.1109/TIP.2017.2662213
|
14 |
ZHANG C, LI H X, CHEN C L, et al. Enhanced group sparse regularized nonconvex regression for face recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(5): 2438- 2452.
|
15 |
ZHONG K Y, LIU J L. Image classification based on weighted nonconvex low-rank and discriminant least squares regression. Applied Intelligence, 2023, 53(18): 20844- 20862.
doi: 10.1007/s10489-023-04541-4
|
16 |
ZHENG J W, LOU K C, YANG X, et al. Weighted mixed-norm regularized regression for robust face identification. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(12): 3788- 3802.
doi: 10.1109/TNNLS.2019.2899073
|
17 |
LUO L, YANG J, QIAN J J, et al. Robust image regression based on the extended matrix variate power exponential distribution of dependent noise. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28(9): 2168- 2182.
doi: 10.1109/TNNLS.2016.2573644
|
18 |
GASSO G, RAKOTOMAMONJY A, CANU S. Recovering sparse signals with a certain family of nonconvex penalties and DC programming. IEEE Transactions on Signal Processing, 2009, 57(12): 4686- 4698.
doi: 10.1109/TSP.2009.2026004
|
19 |
GAO C X, WANG N Y, YU Q, et al. A feasible nonconvex relaxation approach to feature selection. Proceedings of the AAAI Conference on Artificial Intelligence, 2011, 25(1): 356- 361.
doi: 10.1609/aaai.v25i1.7921
|
20 |
JIN Z F, WAN Z P, JIAO Y L, et al. An alternating direction method with continuation for nonconvex low rank minimization. Journal of Scientific Computing, 2016, 66(2): 849- 869.
doi: 10.1007/s10915-015-0045-0
|
21 |
MONTEFUSCO L B, LAZZARO D, PAPI S. A fast algorithm for nonconvex approaches to sparse recovery problems. Signal Processing, 2013, 93(9): 2636- 2647.
doi: 10.1016/j.sigpro.2013.02.018
|
22 |
LU C Y, TANG J H, YAN S C, et al. Nonconvex nonsmooth low rank minimization via iteratively reweighted nuclear norm. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society, 2016, 25(2): 829- 839.
doi: 10.1109/TIP.2015.2511584
|
23 |
FRIEDMAN J H. Fast sparse regression and classification. International Journal of Forecasting, 2012, 28(3): 722- 738.
doi: 10.1016/j.ijforecast.2012.05.001
|
24 |
GEORGHIADES A S, BELHUMEUR P N, KRIEGMAN D J. From few to many: illumination cone models for face recognition under variable lighting and pose. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23(6): 643- 660.
doi: 10.1109/34.927464
|
25 |
SAMARIA F S, HARTER A C. Parameterisation of a stochastic model for human face identification[C]//Proceedings of 1994 IEEE Workshop on Applications of Computer Vision. Washington D. C., USA: IEEE Press, 1994: 138-142.
|
26 |
MARTINEZ A, BENAVENTE R. The AR face database: CVC Tech. Rep. #24[R]. Barcelona, The Kingdom of Spain: Robot Vision Lab, 1999.
|
27 |
CHEN Z, WU X J, KITTLER J. Relaxed block-diagonal dictionary pair learning with locality constraint for image recognition. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(8): 3645- 3659.
doi: 10.1109/TNNLS.2021.3053941
|
28 |
YIN H F, WU X J, KITTLER J. Face recognition via locality constrained low rank representation and dictionary learning[EB/OL]. [2023-10-02]. https://arxiv.org/abs/1912.03145.
|
29 |
ZHANG C, LI H X, QIAN Y H, et al. Locality-constrained discriminative matrix regression for robust face identification. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(3): 1254- 1268.
doi: 10.1109/TNNLS.2020.3041636
|
30 |
CHEN Z, WU X J, XU T Y, et al. Discriminative dictionary pair learning with scale-constrained structured representation for image classification. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(12): 10225- 10239.
doi: 10.1109/TNNLS.2022.3165217
|