1 |
|
2 |
CHEN Y C , ZHU X T , ZHENG W S , et al. Person re-identification by camera correlation aware feature augmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40 (2): 392- 408.
doi: 10.1109/TPAMI.2017.2666805
|
3 |
祁磊, 于沛泽, 高阳. 弱监督场景下的行人重识别研究综述. 软件学报, 2020, 31 (9): 2883- 2902.
|
|
QI L , YU P Z , GAO Y . Research on weak-supervised person re-identification. Journal of Software, 2020, 31 (9): 2883- 2902.
|
4 |
叶钰, 王正, 梁超, 等. 多源数据行人重识别研究综述. 自动化学报, 2020, 46 (9): 1869- 1884.
doi: 10.16383/j.aas.c190278
|
|
YE Y , WANG Z , LIANG C , et al. A survey on multi-source person re-identification. Acta Automatica Sinica, 2020, 46 (9): 1869- 1884.
doi: 10.16383/j.aas.c190278
|
5 |
蔡毅翔, 秦品乐, 曾建潮, 等. 针对大角度下视角差异的行人重识别方法研究. 计算机工程, 2024, 50 (5): 330- 341.
doi: 10.19678/j.issn.1000-3428.0067532
|
|
CAI Y X , QIN P L , ZENG J C , et al. Research on person re-identification method for large-angle viewpoint differences. Computer Engineering, 2024, 50 (5): 330- 341.
doi: 10.19678/j.issn.1000-3428.0067532
|
6 |
GHEISSARI N, SEBASTIAN T B, HARTLEY R. Person reidentification using spatiotemporal appearance[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2006: 1528-1535.
|
7 |
ZHENG L, SHEN L Y, TIAN L, et al. Scalable person re-identification: a benchmark[C]//Proceedings of the IEEE International Conference on Computer Vision (ICCV). Washington D.C., USA: IEEE Press, 2015: 1116-1124.
|
8 |
|
9 |
MARTINEL N, FORESTI G L, MICHELONI C. Aggregating deep pyramidal representations for person re-identification[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Washington D.C., USA: IEEE Press, 2019: 1-10.
|
10 |
杨婉香, 严严, 陈思, 等. 基于多尺度生成对抗网络的遮挡行人重识别方法. 软件学报, 2020, 31 (7): 1943- 1958.
doi: 10.13328/j.cnki.jos.005932
|
|
YANG W X , YAN Y , CHEN S , et al. Multi-scale generative adversarial network for person re-identification under occlusion. Journal of Software, 2020, 31 (7): 1943- 1958.
doi: 10.13328/j.cnki.jos.005932
|
11 |
WANG T Q , GONG S G , ZHU X T , et al. Person re-identification by video ranking. Berlin, Germany: Springer International Publishing, 2014.
|
12 |
ZHENG L , BIE Z , SUN Y F , et al. MARS: a video benchmark for large-scale person re-identification. Berlin, Germany: Springer International Publishing, 2016.
|
13 |
张云鹏, 王洪元, 张继, 等. 近邻中心迭代策略的单标注视频行人重识别. 软件学报, 2021, 32 (12): 4025- 4035.
URL
|
|
ZHANG Y P , WANG H Y , ZHANG J , et al. One-shot video-based person re-identification based on neighborhood center iteration strategy. Journal of Software, 2021, 32 (12): 4025- 4035.
URL
|
14 |
YE M, LIANG C, WANG Z, et al. Specific person retrieval via incomplete text description[C]//Proceedings of the 5th ACM on International Conference on Multimedia Retrieval. New York, USA: ACM Press, 2015: 547-550.
|
15 |
申士彪, 彭健钧, 王鸿亮, 等. 基于YOLOv8和DeepSort的多区域行人追踪算法研究. 小型微型计算机系统, 2024, 45 (8): 1935- 1943.
doi: 10.20009/j.cnki.21-1106/TP.2024-0083
|
|
SHEN S B , PENG J J , WANG H L , et al. Research on multi-area pedestrian rracking agorithm based on YOLOv8 and DeepSort. Journal of Chinese Computer Systems, 2024, 45 (8): 1935- 1943.
doi: 10.20009/j.cnki.21-1106/TP.2024-0083
|
16 |
KARANAM S, LI Y, RADKE R J. Person re-identification with discriminatively trained viewpoint invariant dictionaries[C]//Proceedings of the IEEE International Conference on Computer Vision (ICCV). Washington D.C., USA: IEEE Press, 2015: 4516-4524.
|
17 |
BAK S, ZAIDENBERG S, BOULAY B, et al. Improving person re-identification by viewpoint cues[C]//Proceedings of the 11th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS). Washington D.C., USA: IEEE Press, 2014: 175-180.
|
18 |
LI X, ZHENG W S, WANG X J, et al. Multi-scale learning for low-resolution person re-identification[C]//Proceedings of the IEEE International Conference on Computer Vision (ICCV). Washington D.C., USA: IEEE Press, 2015: 3765-3773.
|
19 |
WANG Y, WANG L Q, YOU Y R, et al. Resource aware person re-identification across multiple resolutions[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2018: 8042-8051.
|
20 |
HUANG Y K, ZHA Z J, FU X Y, et al. Illumination-invariant person re-identification[C]//Proceedings of the 27th ACM International Conference on Multimedia. New York, USA: ACM Press, 2019: 365-373.
|
21 |
CHO Y J, YOON K J. Improving person re-identification via pose-aware multi-shot matching[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2016: 1354-1362.
|
22 |
ZHAO H Y, TIAN M Q, SUN S Y, et al. Spindle net: person re-identification with human body region guided feature decomposition and fusion[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2017: 907-915.
|
23 |
SARFRAZ M S, SCHUMANN A, EBERLE A, et al. A pose-sensitive embedding for person re-identification with expanded cross neighborhood re-ranking[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2018: 420-429.
|
24 |
HUANG H J, LI D W, ZHANG Z, et al. Adversarially occluded samples for person re-identification[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2018: 5098-5107.
|
25 |
HOU R, MA B, CHANG H, et al. VRSTC: occlusion-free video person re-identification[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2019: 7183-7192
|
26 |
LI S, XIAO T, LI H S, et al. Identity-aware textual-visual matching with latent co-attention[C]//Proceedings of the IEEE International Conference on Computer Vision (ICCV). Washington D.C., USA: IEEE Press, 2017: 1908-1917.
|
27 |
WU A C, ZHENG W S, YU H X, et al. RGB-infrared cross-modality person re-identification[C]//Proceedings of the IEEE International Conference on Computer Vision (ICCV). Washington D.C., USA: IEEE Press, 2017: 5380-5389.
|
28 |
SONG C F, HUANG Y, OUYANG W L, et al. Mask-guided contrastive attention model for person re-identification[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2018: 1179-1188.
|
29 |
FARENZENA M, BAZZANI L, PERINA A, et al. Person re-identification by symmetry-driven accumulation of local features[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2010: 2360-2367.
|
30 |
YANG Y , YANG J M , YAN J J , et al. Salient color names for person re-identification. Berlin, Germany: Springer International Publishing, 2014.
|
31 |
LIAO S C, HU Y, ZHU X Y, et al. Person re-identification by local maximal occurrence representation and metric learning[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2015: 2197-2206.
|
32 |
MATSUKAWA T, OKABE T, SUZUKI E, et al. Hierarchical Gaussian descriptor for person re-identification[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2016: 1363-1372.
|
33 |
KÖSTINGER M, HIRZER M, WOHLHART P, et al. Large scale metric learning from equivalence constraints[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2012: 2288-2295.
|
34 |
ZHENG W S, GONG S G, XIANG T. Person re-identification by probabilistic relative distance comparison[C]//Proceedings of CVPR'11. Washington D.C., USA: IEEE Press, 2011: 649-656.
|
35 |
HIRZER M , ROTH P M , KÖSTINGER M , et al. Relaxed pairwise learned metric for person re-identification. Berlin, Germany: Springer, 2012.
|
36 |
陈西江, 安庆, 班亚. 优化EfficientDet深度学习的车辆检测. 南京信息工程大学学报(自然科学版), 2021, 13 (6): 653- 660.
doi: 10.13878/j.cnki.jnuist.2021.06.003
|
|
CHEN X J , AN Q , BAN Y . Optimized EfficientDet deep learning model for vehicle detection. Journal of Nanjing University of Information Science & Technology (Natural Science Edition), 2021, 13 (6): 653- 660.
doi: 10.13878/j.cnki.jnuist.2021.06.003
|
37 |
胡凯, 郑翡, 卢飞宇, 等. 基于深度学习的行为识别算法综述. 南京信息工程大学学报(自然科学版), 2021, 13 (6): 730- 743.
doi: 10.13878/j.cnki.jnuist.2021.06.011
|
|
HU K , ZHENG F , LU F Y , et al. A survey of action recognition algorithms based on deep learning. Journal of Nanjing University of Information Science & Technology (Natural Science Edition), 2021, 13 (6): 730- 743.
doi: 10.13878/j.cnki.jnuist.2021.06.011
|
38 |
|
39 |
WEI L H, ZHANG S L, GAO W, et al. Person transfer GAN to bridge domain gap for person re-identification[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2018: 79-88.
|
40 |
|
41 |
|
42 |
LI W, WANG X G. Locally aligned feature transforms across views[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2013: 3594-3601.
|
43 |
ZHAO R, OUYANG W L, WANG X G. Unsupervised salience learning for person re-identification[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2013: 3586-3593.
|
44 |
ZHENG Z D, ZHENG L, YANG Y. Unlabeled samples generated by GAN improve the person re-identification baseline in vitro[C]//Proceedings of the IEEE International Conference on Computer Vision (ICCV). Washington D.C., USA: IEEE Press, 2017: 3774-3782.
|
45 |
LI W, ZHU X T, GONG S G. Harmonious attention network for person re-identification[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2018: 2285-2294.
|
46 |
SI J L, ZHANG H G, LI C G, et al. Dual attention matching network for context-aware feature sequence based person re-identification[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2018: 5363-5372.
|
47 |
ZHAO L M, LI X, ZHUANG Y T, et al. Deeply-learned part-aligned representations for person re-identification[C]//Proceedings of the IEEE International Conference on Computer Vision (ICCV). Washington D.C., USA: IEEE Press, 2017: 3239-3248.
|
48 |
ZHOU S P, WANG J J, WANG J Y, et al. Point to set similarity based deep feature learning for person re-identification[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2017: 5028-5037.
|
49 |
|
50 |
戴臣超, 王洪元, 倪彤光, 等. 基于深度卷积生成对抗网络和拓展近邻重排序的行人重识别. 计算机研究与发展, 2019, 56 (8): 1632- 1641.
|
|
DAI C C , WANG H Y , NI T G , et al. Person re-identification based on deep convolutional generative adversarial network and expanded neighbor reranking. Journal of Computer Research and Development, 2019, 56 (8): 1632- 1641.
|
51 |
匡澄, 陈莹. 基于多粒度特征融合网络的行人重识别. 电子学报, 2021, 49 (8): 1541- 1550.
doi: 10.16136/j.joel.2022.09.0886
|
|
KUANG C , CHEN Y . Multi-granularity feature fusion network for person re-identification. Acta Electronica Sinica, 2021, 49 (8): 1541- 1550.
doi: 10.16136/j.joel.2022.09.0886
|
52 |
ZHENG L, ZHANG H H, SUN S Y, et al. Person re-identification in the wild[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2017: 3346-3355.
|
53 |
丁宗元, 王洪元, 陈付华, 等. 基于距离中心化与投影向量学习的行人重识别. 计算机研究与发展, 2017, 54 (8): 1785- 1794.
|
|
DING Z Y , WANG H Y , CHEN F H , et al. Person re-identification based on distance centralization and projection vectors learning. Journal of Computer Research and Development, 2017, 54 (8): 1785- 1794.
|
54 |
杜宇宁, 艾海舟. 基于二次相似度函数学习的行人再识别. 计算机学报, 2016, 39 (8): 1639- 1651.
doi: 10.11897/SP.J.1016.2016.01639
|
|
DU Y N , AI H Z . Learning quadratic similarity function for pedestrian re-identification. Chinese Journal of Computers, 2016, 39 (8): 1639- 1651.
doi: 10.11897/SP.J.1016.2016.01639
|
55 |
YAO H T , ZHANG S L , HONG R C , et al. Deep representation learning with part loss for person re-identification. IEEE Transactions on Image Processing, 2019, 28 (6): 2860- 2871.
doi: 10.1109/TIP.2019.2891888
|
56 |
SUN Y F, ZHENG L, YANG Y, et al. Beyond part models: person retrieval with refined part pooling (and a strong convolutional baseline)[C]//Proceedings of ECCV'18. Berlin, Germany: Springer International Publishing, 2018: 501-518.
|
57 |
SU C , ZHANG S L , XING J L , et al. Deep attributes driven multi-camera person re-identification. Berlin, Germany: Springer International Publishing, 2016.
|
58 |
LIN Y T , ZHENG L , ZHENG Z D , et al. Improving person re-identification by attribute and identity learning. Pattern Recognition, 2019, 95, 151- 161.
doi: 10.1016/j.patcog.2019.06.006
|
59 |
MATSUKAWA T, SUZUKI E. Person re-identification using CNN features learned from combination of attributes[C]//Proceedings of the 23rd International Conference on Pattern Recognition (ICPR). Washington D.C., USA: IEEE Press, 2016: 2428-2433.
|
60 |
ZHENG M, KARANAM S, WU Z Y, et al. Re-identification with consistent attentive Siamese networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2019: 5735-5744.
|
61 |
LUO C C, CHEN Y T, WANG N Y, et al. Spectral feature transformation for person re-identification[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). Washington D.C., USA: IEEE Press, 2019: 4976-4985.
|
62 |
|
63 |
WANG J Y, ZHU X T, GONG S G, et al. Transferable joint attribute-identity deep learning for unsupervised person re-identification[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2018: 2275-2284.
|
64 |
LIN S, LI H L, LI C T, et al. Multi-task mid-level feature alignment network for unsupervised cross-dataset person re-identification[EB/OL]. [2024-03-11]. https://arxiv.org/abs/1807.01440v2.
|
65 |
PAN S J , TSANG I W , KWOK J T , et al. Domain adaptation via transfer component analysis. IEEE Transactions on Neural Networks, 2011, 22 (2): 199- 210.
|
66 |
DENG W J, ZHENG L, YE Q X, et al. Image-image domain adaptation with preserved self-similarity and domain-dissimilarity for person re-identification[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2018: 994-1003.
|
67 |
ZHU J Y, PARK T, ISOLA P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]//Proceedings of the IEEE International Conference on Computer Vision (ICCV). Washington D.C., USA: IEEE Press, 2017: 2242-2251.
|
68 |
ZHONG Z, ZHENG L, LI S Z, et al. Generalizing a person retrieval model hetero-and homogeneously[C]//Proceedings of the European Conference on Computer Vision (ECCV). Berllin, Germany: Springer International Publishing, 2018: 176-192.
|
69 |
CHOI Y, CHOI M, KIM M, et al. StarGAN: unified generative adversarial networks for multi-domain image-to-image translation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2018: 8789-8797.
|
70 |
ZHONG Z, ZHENG L, LUO Z M, et al. Invariance matters: exemplar memory for domain adaptive person re-identification[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2019: 598-607.
|
71 |
ZHONG Z, ZHENG L, ZHENG Z D, et al. Camera style adaptation for person re-identification[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2018: 5157-5166.
|
72 |
CHEN Y B, ZHU X T, GONG S G. Instance-guided context rendering for cross-domain person re-identification[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). Washington D.C., USA: IEEE Press, 2019: 232-242.
|
73 |
GONG K, LIANG X D, ZHANG D Y, et al. Look into person: self-supervised structure-sensitive learning and a new benchmark for human parsing[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2017: 6757-6765.
|
74 |
LI Y J, LIN C S, LIN Y B, et al. Cross-dataset person re-identification via unsupervised pose disentanglement and adaptation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). Washington D.C., USA: IEEE Press, 2019: 7918-7928.
|
75 |
ISOLA P, ZHU J Y, ZHOU T H, et al. Image-to-image translation with conditional adversarial networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2017: 5967-5976.
|
76 |
ZOU Y , YANG X D , YU Z D , et al. Joint disentangling and adaptation for cross-domain person re-identification. Berlin, Germany: Springer International Publishing, 2020.
|
77 |
FU Y, WEI Y C, WANG G S, et al. Self-similarity grouping: a simple unsupervised cross domain adaptation approach for person re-identification[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). Washington D.C., USA: IEEE Press, 2019: 6112-6121.
|
78 |
ESTER M, KRIEGEL H, SANDER J, et al. A density-based algorithm for discovering clusters in large spatial databases with noise[C]//Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM Press, 2014: 226-231.
|
79 |
CHEN G Y , LU Y H , LU J W , et al. Deep credible metric learning for unsupervised domain adaptation person re-identification. Berlin, Germany: Springer International Publishing, 2020.
|
80 |
|
81 |
WU Z R, XIONG Y J, YU S X, et al. Unsupervised feature learning via non-parametric instance discrimination[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2018: 3733-3742.
|
82 |
GE Y X, CHEN D P, LI H S. Mutual mean-teaching: pseudo label refinery for unsupervised domain adaptation on person re-identification[EB/OL]. [2024-03-11]. https://arxiv.org/abs/2001.01526v2.
|
83 |
TARVAINEN A, VALPOLA H. Mean teachers are better role models: weight-averaged consistency targets improve semi-supervised deep learning results[EB/OL]. [2024-03-11]. https://arxiv.org/abs/1703.01780.
|
84 |
ZHANG Y, XIANG T, HOSPEDALES T M, et al. Deep mutual learning[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2018: 4320-4328
|
85 |
DONG Y C , LIU H Z , XU C . Asymmetric mutual mean-teaching for unsupervised domain adaptive person re-identification. IEEE Access, 2021, 9, 69971- 69984.
doi: 10.1109/ACCESS.2021.3077952
|
86 |
CHEN H, LAGADEC B, BREMOND F. Enhancing diversity in teacher-student networks via asymmetric branches for unsupervised person re-identification[C]//Proceedings of the IEEE Winter Conference on Applications of Computer Vision (WACV). Washington D.C., USA: IEEE Press, 2021: 1-10.
|
87 |
PAN X G , LUO P , SHI J P , et al. Two at once: enhancing learning and generalization capacities via IBN-Net. Berlin, Germany: Springer International Publishing, 2018.
|
88 |
ZHANG H, WU C R, ZHANG Z Y, et al. ResNeSt: split-attention networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Washington D.C., USA: IEEE Press, 2022: 2735-2745.
|
89 |
KRISHNA K , NARASIMHA MURTY M . Genetic k-means algorithm. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 1999, 29 (3): 433- 439.
|
90 |
ISOBE T, LI D, TIAN L, et al. Towards discriminative representation learning for unsupervised person re-identification[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). Washington D.C., USA: IEEE Press, 2021: 8506-8516.
|
91 |
HAN J, LI Y L, WANG S J. Delving into probabilistic uncertainty for unsupervised domain adaptive person re-identification[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2022: 790-798.
|
92 |
WU Y H, HUANG T T, YAO H T, et al. Multi-centroid representation network for domain adaptive person re-ID[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2022: 2750-2758.
|
93 |
HU Z D, SUN Y F, YANG Y, et al. Divide-and-regroup clustering for domain adaptive person re-identification[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2022: 980-988.
|
94 |
|
95 |
|
96 |
DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16×16 words: Transformers for image recognition at scale[EB/OL]. [2024-03-11]. https://arxiv.org/abs/2010.11929.
|
97 |
YE Z A, HONG C Q, ZENG Z Q, et al. Self-supervised person re-identification with channel-wise Transformer[C]//Proceedings of the IEEE International Conference on Big Data. Washington D.C., USA: IEEE Press, 2022: 4210-4217.
|
98 |
LIN Y T, DONG X Y, ZHENG L, et al. A bottom-up clustering approach to unsupervised person re-identification[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2019: 8738-8745.
|
99 |
LIN Y T, XIE L X, WU Y, et al. Unsupervised person re-identification via softened similarity learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2020: 3390-3399.
|
100 |
XUAN S Y, ZHANG S L. Intra-inter camera similarity for unsupervised person re-identification[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2021: 11926-11935.
|
101 |
|
102 |
YE M, ZHANG X, YUEN P C, et al. Unsupervised embedding learning via invariant and spreading instance feature[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2019: 6210-6219.
|
103 |
CHEN H, WANG Y H, LAGADEC B, et al. Joint generative and contrastive learning for unsupervised person re-identification[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2021: 2004-2013.
|
104 |
KANAZAWA A, BLACK M J, JACOBS D W, et al. End-to-end recovery of human shape and pose[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2018: 7122-7131.
|
105 |
CHEN H, LAGADEC B, BREMOND F. ICE: inter-instance contrastive encoding for unsupervised person re-identification[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). Washington D.C., USA: IEEE Press, 2021: 14940-14949.
|
106 |
HE K M, FAN H Q, WU Y X, et al. Momentum contrast for unsupervised visual representation learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2020: 9729-9738.
|
107 |
RISTANI E , SOLERA F , ZOU R , et al. Performance measures and a data set for multi-target, multi-camera tracking. Berlin, Germany: Springer International Publishing, 2016.
|
108 |
YU H X, ZHENG W S, WU A C, et al. Unsupervised person re-identification by soft multilabel learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2019: 2143-2152.
|
109 |
GE Y, CHEN D, ZHU F, et al. Self-paced contrastive learning with hybrid memory for domain adaptive object re-ID[EB/OL]. [2024-03-11]. https://arxiv.org/abs/2006.02713.
|
110 |
DAI Z Z, WANG G Y, YUAN W H, et al. Cluster contrast for unsupervised person re-identification[C]//Proceedings of the Asian Conference on Computer Vision. Berlin, Germany: Springer, 2023: 319-337.
|
111 |
ZHANG X Y, LI D D, WANG Z G, et al. Implicit sample extension for unsupervised person re-identification[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2022: 7359-7368.
|
112 |
CHO Y, KIM W J, HONG S, et al. Part-based pseudo label refinement for unsupervised person re-identification[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2022: 7298-7308.
|
113 |
FU D P, CHEN D D, BAO J M, et al. Unsupervised pre-training for person re-identification[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2021: 14745-14754.
|
114 |
CARON M, TOUVRON H, MISRA I, et al. Emerging properties in self-supervised vision Transformers[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). Washington D.C., USA: IEEE Press, 2021: 9630-9640.
|
115 |
ZHU K , GUO H Y , YAN T Y , et al. PASS: part-aware self-supervised pre-training for person re-identification. Berlin, Germany: Springer, 2022.
|
116 |
GRAY D , TAO H . Viewpoint invariant pedestrian recognition with an ensemble of localized features. Berlin, Gerlin: Springer, 2008.
|
117 |
|
118 |
LOY C C, LIU C X, GONG S G. Person re-identification by manifold ranking[C]//Proceedings of the IEEE International Conference on Image Processing. Washington D.C., USA: IEEE Press, 2013: 3567-3571.
|
119 |
HIRZER M , BELEZNAI C , ROTH P M , et al. Person re-identification by descriptive and discriminative classification. Berlin, Germany: Springer, 2011.
|
120 |
LI W , ZHAO R , WANG X G . Human reidentification with transferred metric learning. Berlin, Germany: Springer, 2013.
|
121 |
LI W, ZHAO R, XIAO T, et al. DeepReID: deep filter pairing neural network for person re-identification[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2014: 152-159.
|
122 |
ZHONG Z, ZHENG L, CAO D L, et al. Re-ranking person re-identification with k-reciprocal encoding[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2017: 3652-3661.
|
123 |
FELZENSZWALB P F , GIRSHICK R B , MCALLESTER D , et al. Object detection with discriminatively trained part-based models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32 (9): 1627- 1645.
|
124 |
KARANAM S, GOU M R, WU Z Y, et al. A systematic evaluation and benchmark for person re-identification: features, metrics, and datasets[EB/OL]. [2024-03-11]. https://arxiv.org/pdf/1605.09653.
|
125 |
DOLLÁ R P , APPEL R , BELONGIE S , et al. Fast feature pyramids for object detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36 (8): 1532- 1545.
|
126 |
REN S Q , HE K M , GIRSHICK R , et al. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39 (6): 1137- 1149.
|
127 |
DEHGHAN A, ASSARI S M, SHAH M. GMMCP tracker: globally optimal generalized maximum multi clique problem for multiple object tracking[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2015: 4091-4099.
|
128 |
WU Y, LIN Y T, DONG X Y, et al. Exploit the unknown gradually: one-shot video-based person re-identification by stepwise learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2018: 5177-5186.
|
129 |
TANG C R , XUE D Y , CHEN D Y . Feature diversity learning with sample dropout for unsupervised domain adaptive person re-identification. Multimedia Tools and Applications, 2024, 83 (2): 5079- 5097.
doi: 10.1007/s11042-023-15546-z
|
130 |
TIAN Q , DU X X . Multi-class center dynamic contrastive learning for unsupervised domain adaptation person re-identification. Computers and Electrical Engineering, 2024, 116, 109155.
doi: 10.1016/j.compeleceng.2024.109155
|
131 |
WU Q , LI J H , DAI P Y , et al. Unsupervised domain adaptation on person reidentification via dual-level asymmetric mutual learning. IEEE Transactions on Neural Networks and Learning Systems, 2025, 36 (1): 1371- 1382.
|
132 |
MEKHAZNI D, DUFAU M, DESROSIERS C, et al. Camera alignment and weighted contrastive learning for domain adaptation in video person ReID[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV). Washington D.C., USA: IEEE Press, 2023: 1624-1633.
|
133 |
ZHANG F P , CHEN F J , SU Z G , et al. Unsupervised domain adaptation via dynamic clustering and co-segment attentive learning for video-based person re-identification. IEEE Access, 2024, 12, 29583- 29595.
|
134 |
ZOU C, CHEN Z Q, CUI Z C, et al. Discrepant and multi-instance proxies for unsupervised person re-identification[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). Washington D.C., USA: IEEE Press, 2023: 11024-11034.
|
135 |
CHEN Z Q , CUI Z C , ZHANG C , et al. Dual clustering co-teaching with consistent sample mining for unsupervised person re-identification. IEEE Transactions on Circuits and Systems for Video Technology, 2023, 33 (10): 5908- 5920.
doi: 10.1109/TCSVT.2023.3261898
|
136 |
LI P N, WU K Y, ZHOU S P, et al. Pseudo labels refinement with intra-camera similarity for unsupervised person re-identification[C]//Proceedings of the IEEE International Conference on Image Processing (ICIP). Washington D.C., USA: IEEE Press, 2023: 366-370.
|
137 |
XIE P Y, XU X, WANG Z, et al. Unsupervised video person re-identification via noise and hard frame aware clustering[C]//Proceedings of the IEEE International Conference on Multimedia and Expo (ICME). Washington D.C., USA: IEEE Press, 2021: 1-6.
|
138 |
ZANG X H , LI G , GAO W , et al. Exploiting robust unsupervised video person re-identification. IET Image Processing, 2022, 16 (3): 729- 741.
doi: 10.48550/arXiv.2111.05170
|
139 |
王福银, 韩华, 黄丽, 等. 时间特征互补的无监督视频行人重识别. 计算机工程, 2022, 48 (10): 313- 320.
doi: 10.19678/j.issn.1000-3428.0062643
|
|
WANG F Y , HAN H , HUANG L , et al. Unsupervised video person re-identification with complementary temporal features. Computer Engineering, 2022, 48 (10): 313- 320.
doi: 10.19678/j.issn.1000-3428.0062643
|
140 |
YANG Y F , LI L , DONG H S , et al. Progressive unsupervised video person re-identification with accumulative motion and tracklet spatial-temporal correlation. Future Generation Computer Systems, 2023, 142, 90- 100.
doi: 10.1016/j.future.2022.12.023
|
141 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2016: 770-778.
|
142 |
DENG J, DONG W, SOCHER R, et al. ImageNet: a large-scale hierarchical image database[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2009: 248-255.
|
143 |
张倡倡, 吕卫东, 蔡子杰, 等. 基于域泛化的轻量化图像分类算法. 计算机工程, 2025, 51 (1): 182- 189.
doi: 10.19678/j.issn.1000-3428.0068403
|
|
ZHANG C C , LV W D , CAI Z J , et al. Lightweight image classification algorithm based on domain generalization. Computer Engineering, 2025, 51 (1): 182- 189.
doi: 10.19678/j.issn.1000-3428.0068403
|