1 |
刘杰, 房俊, 雷峰津. 电能质量异常数据在线检测方法. 计算机工程与应用, 2020, 56 (9): 240- 247.
|
|
LIU J , FANG J , LEI F J . On-line detection method for abnormal data of power quality. Computer Engineering and Applications, 2020, 56 (9): 240- 247.
|
2 |
李瑞雪, 张泽旭. 数据驱动的航天器异常检测工具对未来中国空间站管理的启示. 载人航天, 2021, 27 (2): 244- 251.
|
|
LI R X , ZHANG Z X . Enlightenment of data-driven spacecraft anomaly detection tools on future space station management in China. Manned Spaceflight, 2021, 27 (2): 244- 251.
|
3 |
MULINKA P, CASAS P. Stream-based machine learning for network security and anomaly detection[C]//Proceedings of the 2018 Workshop on Big Data Analytics and Machine Learning for Data Communication Networks. New York, USA: ACM Press, 2018: 1-7.
|
4 |
CHANDOLA V , BANERJEE A , KUMAR V . Outlier detection: a survey. ACM Computing Surveys, 2007, 14, 15.
|
5 |
|
6 |
DENG A L , HOOI B . Graph neural network-based anomaly detection in multivariate time series. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35 (5): 4027- 4035.
doi: 10.1609/aaai.v35i5.16523
|
7 |
FAN J , ZHANG K , HUANG Y P , et al. Parallel spatio-temporal attention-based TCN for multivariate time series prediction. Neural Computing and Applications, 2023, 35 (18): 13109- 13118.
doi: 10.1007/s00521-021-05958-z
|
8 |
PANG G , SHEN C , CAO L , et al. Deep learning for anomaly detection: a review. ACM Computing Surveys, 2021, 54 (2): 1- 38.
|
9 |
YU Q , LV J B , JIANG L R . An improved ARIMA-based traffic anomaly detection algorithm for wireless sensor networks. International Journal of Distributed Sensor Networks, 2016, 12 (1): 9653230.
doi: 10.1155/2016/9653230
|
10 |
LIU F T, TING K M, ZHOU Z H. Isolation forest[C]//Proceedings of the 8th IEEE International Conference on Data Mining. Washington D.C., USA: IEEE Press, 2008: 413-422.
|
11 |
SAKURADA M, YAIRI T. Anomaly detection using autoencoders with nonlinear dimensionality reduction[C]//Proceedings of the MLSDA 2014 2nd Workshop on Machine Learning for Sensory Data Analysis. Washington D.C., USA: IEEE Press, 2014: 4-11.
|
12 |
LI D, CHEN D C, JIN B H, et al. MAD-GAN: multivariate anomaly detection for time series data with generative adversarial networks[EB/OL]. [2023-10-05]. https://arxiv.org/abs/1901.04997.
|
13 |
PARK D , HOSHI Y , KEMP C C . A multimodal anomaly detector for robot-assisted feeding using an LSTM-based variational autoencoder. IEEE Robotics and Automation Letters, 2018, 3 (3): 1544- 1551.
doi: 10.1109/LRA.2018.2801475
|
14 |
SU Y, ZHAO Y J, NIU C H, et al. Robust anomaly detection for multivariate time series through stochastic recurrent neural network[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York, USA: ACM Press, 2019: 2828-2837.
|
15 |
HUNDMAN K, CONSTANTINOU V, LAPORTE C, et al. Detecting spacecraft anomalies using LSTMs and nonparametric dynamic thresholding[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York, USA: ACM Press, 2018: 387-395.
|
16 |
ZHAO H, WANG Y J, DUAN J Y, et al. Multivariate time-series anomaly detection via graph attention network[C]//Proceedings of the IEEE International Conference on Data Mining (ICDM). Washington D.C., USA: IEEE Press, 2020: 841-850.
|
17 |
梁李芳, 关东海, 张吉, 等. 基于时空注意力机制的多元时间序列异常检测. 计算机科学, 2023, 50 (S2): 450- 457.
|
|
LIANG L F , GUAN D H , ZHANG J , et al. Anomaly detection of multivariate time series based on spatio-temporal attention mechanism. Computer Science, 2023, 50 (S2): 450- 457.
|
18 |
FANG R Y, WEN L J, KANG Z, et al. Structure-preserving graph representation learning[C]//Proceedings of the IEEE International Conference on Data Mining (ICDM). Washington D.C., USA: IEEE Press, 2022: 927-932.
|
19 |
|
20 |
HE K M, ZHANG X Y, REN S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[EB/OL]. [2023-10-05]. https://arxiv.org/abs/1406.4729.
|
21 |
LIU L , TIAN L , KANG Z , et al. Spacecraft anomaly detection with attention temporal convolution networks. Neural Computing and Applications, 2023, 35 (13): 9753- 9761.
|
22 |
SIFFER A, FOUQUE P A, TERMIER A, et al. Anomaly detection in streams with extreme value theory[C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM Press, 2017: 1067-1075.
|
23 |
LI Z H, ZHAO Y J, HAN J Q, et al. Multivariate time series anomaly detection and interpretation using hierarchical inter-metric and temporal embedding[C]//Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining. New York, USA: ACM Press, 2021: 3220-3230.
|
24 |
|
25 |
SHEN L , LI Z , KWOK J . Timeseries anomaly detection using temporal hierarchical one-class network. Advances in Neural Information Processing Systems, 2020, 33, 13016- 13026.
|
26 |
|
27 |
|