1 |
HOLT T J , BOSSLER A M . The palgrave handbook of international cybercrime and cyberdeviance. Berlin, Germany: Palgrave Macmillan, 2020: 135- 154.
|
2 |
ABDELRAHMAN A M , RODRIGUES J J , MAHMOUD M M , et al. Software‐defined networking security for private data center networks and clouds: vulnerabilities, attacks, countermeasures, and solutions. International Journal of Communication Systems, 2021, 34 (4): e4706.
doi: 10.1002/dac.4706
|
3 |
JIAO J H, YE B J, ZHAO Y, et al. Detecting TCP-based DDoS attacks in Baidu cloud computing data centers[C]//Proceedings of the 36th Symposium on Reliable Distributed Systems (SRDS). Washington D.C., USA: IEEE Press, 2017: 256-258.
|
4 |
|
|
|
5 |
GAO Y L , LI X Y , PENG H , et al. Hincti: a cyber threat intelligence modeling and identification system based on heterogeneous information network. IEEE Transactions on Knowledge and Data Engineering, 2022, 34 (2): 708- 722.
doi: 10.1109/TKDE.2020.2987019
|
6 |
SUN N , ZHANG J , RIMBA P , et al. Data-driven cybersecurity incident prediction: a survey. IEEE Communications Surveys & Tutorials, 2019, 21 (2): 1744- 1772.
|
7 |
李艳霞, 柴毅, 胡友强, 等. 不平衡数据分类方法综述. 控制与决策, 2019, 34 (4): 673- 688.
|
|
LI Y X , CHAI Y , HU Y Q , et al. Review of imbalanced data classification methods. Control and Decision, 2019, 34 (4): 673- 688.
|
8 |
HOU X D , ZHANG T , JI L , et al. Combating highly imbalanced steganalysis with small training samples using feature selection. Journal of Visual Communication and Image Representation, 2017, 49, 243- 256.
doi: 10.1016/j.jvcir.2017.09.016
|
9 |
VIEGAS F , ROCHA L , GONCALVES M , et al. A genetic programming approach for feature selection in highly dimensional skewed data. Neurocomputing, 2018, 273, 554- 569.
doi: 10.1016/j.neucom.2017.08.050
|
10 |
ZHOU F , YANG S , FUJITA H , et al. Deep learning fault diagnosis method based on global optimization GAN for unbalanced data. Knowledge-Based Systems, 2020, 187, 104837- 104855.
doi: 10.1016/j.knosys.2019.07.008
|
11 |
LIN W C , TSAI C F , HU Y H , et al. Clustering-based undersampling in class-imbalanced data. Information Sciences, 2017, 409, 17- 26.
|
12 |
CHAWLA N V , BOWYER K W , HALL L O , et al. SMOTE: synthetic minority over-sampling technique. Journal of Artificial Intelligence Research, 2002, 16, 321- 357.
doi: 10.1613/jair.953
|
13 |
BATISTA G E , PRATI R C , MONARD M C . A study of the behavior of several methods for balancing machine learning training data. ACM SIGKDD Explorations Newsletter, 2004, 6 (1): 20- 29.
doi: 10.1145/1007730.1007735
|
14 |
FUQUA D , RAZZAGHI T . A cost-sensitive convolution neural network learning for control chart pattern recognition. Expert Systems with Applications, 2020, 150, 113275.
doi: 10.1016/j.eswa.2020.113275
|
15 |
YIN S , ZHU X P , JING C . Fault detection based on a robust one class support vector machine. Neurocomputing, 2014, 145, 263- 268.
doi: 10.1016/j.neucom.2014.05.035
|
16 |
FENG W , HUANG W J , REN J C . Class imbalance ensemble learning based on the margin theory. Applied Sciences, 2018, 8 (5): 815.
doi: 10.3390/app8050815
|
17 |
徐玉华, 孙知信. 软件定义网络中的异常流量检测研究进展. 软件学报, 2020, 31 (1): 183- 207.
|
|
XU Y H , SUN Z X . Research development of abnormal traffic detection in software defined networks. Journal of Software, 2020, 31 (1): 183- 207.
|
18 |
YANG C . Anomaly network traffic detection algorithm based on information entropy measurement under the cloud computing environment. Cluster Computing, 2019, 22 (1): 8309- 8317.
|
19 |
HOANG D H, NGUYEN H D. A PCA-based method for IoT network traffic anomaly detection[C]//Proceedings of the 20th International Conference on Advanced Communication Technology. Washington D. C., USA: IEEE Press, 2018: 381-386.
|
20 |
程云观, 台宪青, 马治杰. 一种云环境下的高效异常检测策略研究. 计算机应用与软件, 2020, 37 (1): 326- 333.
|
|
CHENG Y G , TAI X Q , MA Z J . An efficient anomaly detection strategy in cloud environments. Computer Applications and Software, 2020, 37 (1): 326- 333.
|
21 |
PEREZ-BUENO F , GARCIA L , MACIA-FERNANDEZ G , et al. Leveraging a probabilistic PCA model to understand the multivariate statistical network monitoring framework for network security anomaly detection. IEEE/ACM Transactions on Networking, 2022, 30 (3): 1217- 1229.
doi: 10.1109/TNET.2021.3138536
|
22 |
杜臻, 马立鹏, 孙国梓, 等. 一种基于小波分析的网络流量异常检测方法. 计算机科学, 2019, 46 (8): 178- 182.
|
|
DU Z , MA L P , SUN G Z , et al. Network traffic anomaly detection method based on wavelet analysis. Computer Science, 2019, 46 (8): 178- 182.
|
23 |
LAVROVA D S , ALEKSEEV I V , SHTYRKINA A A . Security analysis based on controlling dependences of network traffic parameters by wavelet transformation. Automatic Control and Computer Sciences, 2018, 52 (8): 931- 935.
doi: 10.3103/S0146411618080187
|
24 |
GOZDE K , ONDER D , KORAY S O . Increasing the performance of machine learning-based IDSs on an imbalanced and up-to-date dataset. IEEE Access, 2020, 8, 32150- 32162.
doi: 10.1109/ACCESS.2020.2973219
|
25 |
GAO X W , SHAN C , HU C Z , et al. An adaptive ensemble machine learning model for intrusion detection. IEEE Access, 2019, 7, 82512- 82521.
doi: 10.1109/ACCESS.2019.2923640
|
26 |
ZHANG H , LI Y D , LÜ Z H , et al. A real-time and ubiquitous network attack detection based on deep belief network and support vector machine. IEEE/CAA Journal of Automatica Sinica, 2020, 7 (3): 790- 799.
doi: 10.1109/JAS.2020.1003099
|
27 |
WANG Z H , FOK K W , THING V L L . Machine learning for encrypted malicious traffic detection: approaches, datasets and comparative study. Computers & Security, 2022, 113, 102542.
|
28 |
ZHANG P , HE F , ZHANG H , et al. Real-time malicious traffic detection with online isolation forest over SD-WAN. IEEE Transactions on Information Forensics and Security, 2023, 18, 2076- 2090.
doi: 10.1109/TIFS.2023.3262121
|
29 |
FERRAG M A , MAGLARAS L . DeliveryCoin: an IDS and blockchain-based delivery framework for drone-delivered services. Computers, 2019, 8 (3): 58- 73.
doi: 10.3390/computers8030058
|
30 |
LU X L, LIU P J, LIN J Y. Network traffic anomaly detection based on information gain and deep learning[C]//Proceedings of the 3rd International Conference on Information System and Data Mining. New York, USA: ACM Press, 2019: 11-15.
|
31 |
ZHANG Y , CHEN X , JIN L , et al. Network intrusion detection: based on deep hierarchical network and original flow data. IEEE Access, 2019, 7, 37004- 37016.
doi: 10.1109/ACCESS.2019.2905041
|
32 |
LIN P, YE K J, XU C Z. Dynamic network anomaly detection system by using deep learning techniques[C]//Proceedings of International Conference on Cloud Computing. Berlin, Germany: Springer, 2019: 161-176.
|
33 |
AHMAD R , ALSMADI I , ALHAMDANI W , et al. A deep learning ensemble approach to detecting unknown network attacks. Journal of Information Security and Applications, 2022, 67, 103196.
|
34 |
LIU F R, LI X F, XIONG W, et al. An accuracy network anomaly detection method based on ensemble model[C]//Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Washington D. C., USA: IEEE Press, 2021: 125-131.
|
35 |
HE H B, BAI Y, GARCIA E A, et al. ADASYN: adaptive synthetic sampling approach for imbalanced learning[C]//Proceedings of IEEE International Joint Conference on Neural Networks. Washington D. C., USA: IEEE Press, 2008: 1322-1328.
|
36 |
ISHWARAN H , LU M . Standard errors and confidence intervals for variable importance in random forest regression, classification, and survival. Statistics in Medicine, 2019, 38 (4): 558- 582.
|
37 |
|