1 |
MARTELLO S , PISINGER D , VIGO D . The three-dimensional bin packing problem. Operations Research, 2000, 48 (2): 256- 267.
doi: 10.1287/opre.48.2.256.12386
|
2 |
董立岩, 齐竞则, 刘元宁, 等. 基于偏好和虚拟适应度的两阶段依赖任务卸载算法. 吉林大学学报(理学版), 2024, 62 (4): 923- 932.
|
|
DONG L Y , QI J Z , LIU Y N , et al. Two-stage dependent task offloading algorithm based on preference and virtual fitness. Journal of Jilin University (Science Edition), 2024, 62 (4): 923- 932.
|
3 |
HA C T , NGUYEN T T , BUI L T , et al. An online packing heuristic for the three-dimensional container loading problem in dynamic environments and the physical Internet. Berlin, Germany: Springer International Publishing, 2017.
|
4 |
CRAINIC T G , PERBOLI G , TADEI R . Extreme point-based heuristics for three-dimensional bin packing. INFORMS Journal on Computing, 2008, 20 (3): 368- 384.
doi: 10.1287/ijoc.1070.0250
|
5 |
LI X, ZHAO Z, ZHANG K. A genetic algorithm for the three-dimensional bin packing problem with heterogeneous bins[C]// Proceedings of Industrial and Systems Engineering Research Conference. Berlin, Germany: Springer, 2014: 2039.
|
6 |
LAYEB A , CHENCHE S . A novel GRASP algorithm for solving the bin packing problem. International Journal of Information Engineering and Electronic Business, 2012, 4 (2): 8- 14.
doi: 10.5815/ijieeb.2012.02.02
|
7 |
NGUYEN T H , NGUYEN X T . Space splitting and merging technique for online 3-D bin packing. Mathematics, 2023, 11 (8): 1912.
doi: 10.3390/math11081912
|
8 |
ZHAO H, SHE Q J, ZHU C Y, et al. Online 3D bin packing with constrained deep reinforcement learning[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2021: 741-749.
|
9 |
WANG Z F, CHEN Y, LIU C L, et al. Guided reinforce learning through spatial residual value for online 3D bin packing[C]//Proceedings of the 49th Annual Conference of the IEEE Industrial Electronics Society. Washington D.C., USA: IEEE Press, 2023: 1-5.
|
10 |
SONG S, YANG S, SONG R, et al. Towards online 3D bin packing: learning synergies between packing and unpacking via DRL[C]//Proceedings of Conference on Robot Learning. [S. l. ]: PMLR, 2023: 1136-1145.
|
11 |
YANG S , SONG S , CHU S L , et al. Heuristics integrated deep reinforcement learning for online 3D bin packing. IEEE Transactions on Automation Science and Engineering, 2024, 21 (1): 939- 950.
doi: 10.1109/TASE.2023.3235742
|
12 |
ZHAO H, YU Y, XU K. Learning efficient online 3D bin packing on packing configuration trees[C]// Proceedings of International Conference on Learning Representations. Berlin, Germany: Springer, 2006: 1-10.
|
13 |
|
14 |
BARTO A G, SINGH S, CHENTANEZ N. Intrinsically motivated learning of hierarchical collections of skills[C]//Proceedings of the 3rd International Conference on Development and Learning. Berlin, Germany: Springer, 2004: 19.
|
15 |
SUTTON R S , PRECUP D , SINGH S . Between MDPs and semi-MDPs: a framework for temporal abstraction in reinforcement learning. Artificial Intelligence, 1999, 112 (1/2): 181- 211.
|
16 |
KULKARNI T D, NARASIMHAN K, SAEEDI A, et al. Hierarchical deep reinforcement learning: integrating temporal abstraction and intrinsic motivation[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2016: 3682-3690.
|
17 |
李烨, 肖梦巧. 大规模MIMO系统中功率分配的深度强化学习方法. 小型微型计算机系统, 2023, 44 (10): 2221- 2227.
|
|
LI Y , XIAO M Q . Deep reinforcement learning approach for power allocation in massive MIMO systems. Journal of Chinese Computer Systems, 2023, 44 (10): 2221- 2227.
|
18 |
BACON P L, HARB J, PRECUP D, et al. The option-critic architecture[C]//Proceedings of the 31st AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2017: 1726-1734.
|
19 |
孟子晗, 高翔, 刘元归, 等. 基于分层强化学习的机械臂复杂操作技能学习方法. 现代电子技术, 2023, 46 (19): 116- 124.
|
|
MENG Z H , GAO X , LIU Y G , et al. Complex manipulation skill learning approach based on hierarchical reinforcement learning for robot manipulator. Modern Electronics Technique, 2023, 46 (19): 116- 124.
|
20 |
|
21 |
|
22 |
|
23 |
VEZHNEVETS A S, OSINDERO S, SCHAUL T, et al. Feudal networks for hierarchical reinforcement learning[C]//Proceedings of the 34th International Conference on Machine Learning. New York, USA: ACM Press, 2017: 3540-3549.
|
24 |
|
25 |
孙崇, 王海荣, 荆博祥, 等. 一种分层强化学习的知识推理方法. 计算机应用研究, 2024, 41 (3): 805- 810.
|
|
SUN C , WANG H R , JING B X , et al. Knowledge reasoning method based on hierarchical reinforcement learning. Application Research of Computers, 2024, 41 (3): 805- 810.
|
26 |
张倩, 李天皓, 白春光. 基于多智能体强化学习的分层决策优化方法. 电子科技大学学报(社科版), 2022, 24 (6): 90- 96.
|
|
ZHANG Q , LI T H , BAI C G . Hierarchical decision optimization method based on multi-agent reinforcement learning. Journal of University of Electronic Science and Technology of China (Social Sciences Edition), 2022, 24 (6): 90- 96.
|
27 |
ZHAO H , ZHU C Y , XU X , et al. Learning practically feasible policies for online 3D bin packing. Science China Information Sciences, 2021, 65 (1): 112105.
|
28 |
WU Y, MANSIMOV E, GROSSE R B, et al. Scalable trust-region method for deep reinforcement learning using kronecker-factored approximation[EB/OL]. [2023-11-07]. https://arxiv.org/abs/1708.05144.
|