作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2025, Vol. 51 ›› Issue (9): 213-219. doi: 10.19678/j.issn.1000-3428.0069171

• 移动互联与通信技术 • 上一篇    下一篇

具有时延约束的高速铁路云无线接入网络资源分配研究

李世超*()   

  1. 桂林电子科技大学信息与通信学院,广西 桂林 541004
  • 收稿日期:2024-01-04 修回日期:2024-05-09 出版日期:2025-09-15 发布日期:2025-09-26
  • 通讯作者: 李世超
  • 基金资助:
    国家自然科学基金(62361016); 国家留学基金(202108450022)

Research on Resource Allocation in Cloud Radio Access Networks for High-Speed Railways with Delay Constraints

LI Shichao*()   

  1. School of Information and Communication, Guilin University of Electronic Technology, Guilin 541004, Guangxi, China
  • Received:2024-01-04 Revised:2024-05-09 Online:2025-09-15 Published:2025-09-26
  • Contact: LI Shichao

摘要:

高速铁路无线信道是一种强时变的无线信道,在实际中难以保证乘客的时延约束。在高速铁路云无线接入网络(C-RAN)架构下,构建一个同时满足用户业务统计时延约束与前向链路容量限制的能量效率最大化问题。考虑到高速列车具有运动方向确定、轨迹固定、路径损耗可预测等特点,以路径损耗信息替代传统信道状态信息进行建模,从而有效降低能量效率最大化问题的复杂度。鉴于原始问题为非凸优化问题,首先通过变换将问题重构为一个等价的凸优化问题,随后设计一种2层迭代的功率分配算法,并使用拉格朗日对偶方法对内层子问题进行求解。在不同列车速度、服务质量(QoS)指数、用户数量下进行仿真验证,结果表明,所提算法不仅能够严格满足统计时延约束,还能显著提升系统的能量效率,该研究可以为高速铁路C-RAN中绿色、高效的资源分配任务提供可行思路和理论支持。

关键词: 高速铁路, 云无线接入网络, 业务统计时延, 能量效率, 功率分配

Abstract:

A high-speed railway wireless channel is a highly time-varying wireless channel, posing challenges to the enforcement of delay constraints for passengers in practical scenarios. Within the framework of the Cloud Radio Access Networks (C-RAN) architecture for high-speed railways, this study constructs an energy efficiency maximization problem that simultaneously satisfies the statistical delay constraints of user services and forward link capacity limitations. Considering the characteristics of high-speed trains, such as their deterministic movement direction, fixed trajectory, and predictable path loss, the model is established by utilizing the path loss information instead of traditional channel state information, thereby effectively reducing the complexity of the energy efficiency maximization problem. As the original problem is a non-convex optimization problem, it is first transformed into an equivalent convex optimization problem. Subsequently, a two-layer iterative power allocation algorithm is designed, and the Lagrangian duality method is employed to solve the inner subproblem. Simulation validations are conducted under varying train speeds, Quality of Service (QoS) indices, and numbers of users. The results demonstrate that the proposed algorithm not only strictly adheres to the statistical delay constraints but also significantly enhances the energy efficiency of the system. Thus, this study provides feasible solutions and theoretical support for green and efficient resource allocation tasks in high-speed railway C-RAN systems.

Key words: high-speed railway, Cloud Radio Access Networks (C-RAN), service statistics delay, energy efficiency, power allocation