作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2025, Vol. 51 ›› Issue (9): 220-230. doi: 10.19678/j.issn.1000-3428.0069092

• 图形图像处理 • 上一篇    下一篇

基于空谱先验与高阶张量表示的超分辨率重建算法

王震1,2,3, 陈希爱2,3,*(), 杨超1,2,3, 贾慧迪2,3,4, 韩志2,3, 唐延东2,3   

  1. 1. 沈阳化工大学信息工程学院, 辽宁 沈阳 110142
    2. 中国科学院沈阳自动化研究所机器人学国家重点实验室,辽宁 沈阳 110016
    3. 中国科学院机器人与智能制造创新研究院,辽宁 沈阳 110016
    4. 中国科学院大学,北京 100049
  • 收稿日期:2023-12-25 修回日期:2024-04-23 出版日期:2025-09-15 发布日期:2025-09-26
  • 通讯作者: 陈希爱
  • 基金资助:
    国家自然科学基金(61821005); 中国科学院稳定支持基础研究领域青年团队计划(YSBR-041); 中国科学院青年创新促进会(2022196)

Super-Resolution Reconstruction Algorithm Based on Spatial-Spectral Prior and High-Order Tensor Representation

WANG Zhen1,2,3, CHEN Xi′ai2,3,*(), YANG Chao1,2,3, JIA Huidi2,3,4, HAN Zhi2,3, TANG Yandong2,3   

  1. 1. College of Information Engineering, Shenyang University of Chemical Technology, Shenyang 110142, Liaoning, China
    2. State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, Liaoning, China
    3. Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, Liaoning, China
    4. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2023-12-25 Revised:2024-04-23 Online:2025-09-15 Published:2025-09-26
  • Contact: CHEN Xi′ai

摘要:

现有高光谱图像(HIS)超分辨率任务存在信息表示不充分、先验信息利用不足、重建精度不高的问题,严重影响后续图像处理任务精度。针对此问题,提出基于多-高光谱图像融合的非局部高阶张量表示算法,用于HSI超分辨率重建。通过k-means算法将图像划分为非局部相似块,将其构建成高阶张量,并利用张量火车所具有的均衡分解策略挖掘非局部高阶张量空间-光谱低秩冗余性。由于图像空间域中具有局部平滑特性,因此采用加权组稀疏正则项描述此特征,并构造加权光谱解混约束项来解决超分辨过程中光谱数据的融合失真问题,利用交替方向乘子法推导给出各变量具体求解计算过程。在公开的3个真实数据集CAVE、Pavia University、Indian Pines上的实验结果表明,与现有代表性超分辨率算法相比,所提算法的平均峰值信噪比(PSNR)和结构相似性(SSIM)分别提高0.290 8 dB、0.002,光谱角映射器(SAM)和全局相对误差指数分别降低了0.116°和3.1%。

关键词: 超分辨率, 融合, 非局部高阶张量, 张量火车, 光谱解混

Abstract:

Existing Hyper-Spectral Image (HSI) super-resolution tasks suffer from issues such as inadequate information representation, limited utilization of prior knowledge, and low reconstruction accuracy. These problems significantly affect the accuracy of subsequent image-processing tasks. To address this challenge, this study proposes a HSI super-resolution reconstruction algorithm based on spatial-spectral prior and high-order tensor representation. The algorithm divides image into non-local similar blocks using the k-means algorithm and constructs them into high-order tensors. The balanced decomposition strategy of the tensor-train is used to exploit the low-rank redundancy in these non-local high-order tensors. In addition, considering the local smoothness property in the image spatial domain, a weighted group sparse regularization term is employed. Furthermore, a weighted spectral unmixing constraint term is used to address fusion distortion issues in spectral data during processes, and the calculation process for each variable is presented using the alternating direction method of multipliers. In experimental evaluations on three publicly available real datasets—CAVE, Pavia University, and Indian Pines, the proposed algorithm improves the average Peak-Signal-to-Noise-Ratio (PSNR), Structural Similarity Index (SSIM) by 0.290 8 dB, 0.002, Spectral Angle Mapper (SAM) and global relative error index are reduced by 0.116° and 3.1%, respectively.

Key words: super-resolution, fusion, non-local high-order tensor, tensor-train, spectral unmixing