1 |
陈荥, 岳殿武, 李琦, 等. 可重构智能表面辅助的毫米波无线携能通信系统研究. 无线电工程, 2024, 54(6): 1512- 1521.
doi: 10.3969/j.issn.1003-3106.2024.06.021
|
|
CHEN Y, YUE D W, LI Q, et al. Reconfigurable intelligent surface-assisted millimeter wave simultaneous wireless information and power transfer system. Radio Engineering, 2024, 54(6): 1512- 1521.
doi: 10.3969/j.issn.1003-3106.2024.06.021
|
2 |
张在琛, 江浩. 智能超表面使能无人机高能效通信信道建模与传输机理分析. 电子学报, 2023, 51(10): 2623- 2634.
|
|
ZHANG Z S, JIANG H. Channel modeling and characteristics analysis for high energy-efficient RIS-assisted UAV communications. Chinese Journal of Electronics, 2023, 51(10): 2623- 2634.
|
3 |
刘琦, 侯丽, 彭章友. 毫米波大规模MIMO系统多用户波束赋形优化算法. 黄山学院学报, 2021, 23(3): 22- 25.
|
|
LIU Q, HOU L, PENG Z Y. Optimization algorithm of multi-user beamforming on millimeter wave large scale MIMO system. Journal of Huangshan University, 2021, 23(3): 22- 25.
|
4 |
任远. 毫米波非正交多址接入系统中基于用户分簇的资源优化方案[D]. 合肥: 安徽大学, 2021.
|
|
REN Y. Resource optimization scheme based on user clustering in millimeter wave non-orthogonal multiple access systems[D]. Hefei: Anhui University, 2021. (in Chinese)
|
5 |
ALI M S, TABASSUM H, HOSSAIN E. Dynamic user clustering and power allocation for uplink and downlink non-orthogonal multiple access systems. IEEE Access, 2016, 4, 6325- 6343.
|
6 |
王奕峰, 周婷, 徐天衡. 一种NOMA系统中的反馈深度神经网络检测算法. 电讯技术, 2023, 63(5): 611- 617.
|
|
WANG Y F, ZHOU T, XU T H. A feedback deep neural network detection algorithm in NOMA systems. Telecommunication Engineering, 2023, 63(5): 611- 617.
|
7 |
庄陵, 黄恺. 基于非正交多址接入的RIS-IM系统. 华南理工大学学报(自然科学版), 2023, 51(11): 28- 34.
doi: 10.12141/j.issn.1000-565X.230015
|
|
ZHUANG L, HUANG K. RIS-IM system based on non-orthogonal multiple access. Journal of South China University of Technology(Natural Science Edition), 2023, 51(11): 28- 34.
doi: 10.12141/j.issn.1000-565X.230015
|
8 |
管伟, 岳殿武, 艾志杰, 等. 基于智能反射表面大规模MIMO-NOMA系统频谱效率分析. 太赫兹科学与电子信息学报, 2022, 20(7): 659- 668.
|
|
GUAN W, YUE D W, AI Z J, et al. Spectrum efficiency analysis of massive MIMO-NOMA system based on intelligent reflecting surface. Journal of Terahertz Science and Electronic Information Technology, 2022, 20(7): 659- 668.
|
9 |
XIAO Z Y, ZHU L P, CHOI J, et al. Joint power allocation and beamforming for non-orthogonal multiple access in 5G millimeter wave communications. IEEE Transactions on Wireless Communications, 2018, 17(5): 2961- 2974.
doi: 10.1109/TWC.2018.2804953
|
10 |
WANG B C, DAI L L, WANG Z C, et al. Spectrum and energy-efficient beamspace MIMO-NOMA for millimeter-wave communications using lens antenna array. IEEE Journal on Selected Areas in Communications, 2017, 35(10): 2370- 2382.
doi: 10.1109/JSAC.2017.2725878
|
11 |
JIAO R C, DAI L L, WANG W, et al. Max-Min fairness for beamspace MIMO-NOMA: from single-beam to multi-beam. IEEE Transactions on Wireless Communications, 2022, 21(2): 739- 752.
doi: 10.1109/TWC.2021.3098900
|
12 |
WANG K D, CUI J J, DING Z G, et al. Stackelberg game for user clustering and power allocation in millimeter wave-NOMA systems. IEEE Transactions on Wireless Communications, 2019, 18(5): 2842- 2857.
doi: 10.1109/TWC.2019.2908642
|
13 |
DAI L L, WANG B C, PENG M G, et al. Hybrid precoding-based millimeter-wave massive MIMO-NOMA with simultaneous wireless information and power transfer. IEEE Journal on Selected Areas in Communications, 2019, 37(1): 131- 141.
doi: 10.1109/JSAC.2018.2872364
|
14 |
TUSHA A, DOGAN S, ARSLAN H. A hybrid downlink NOMA with OFDM and OFDM-IM for beyond 5G wireless networks. IEEE Signal Processing Letters, 2020, 27, 491- 495.
doi: 10.1109/LSP.2020.2979059
|
15 |
ABIDRABBU S S, ARSLAN H. Energy-efficient resource allocation for 5G cognitive radio NOMA using game theory[C]//Proceedings of IEEE Wireless Communications and Networking Conference. Washington D. C., USA: IEEE Press, 2021: 1-5.
|
16 |
BULATOVIC D, UROSEVIC U, VELJOVIC Z, et al. Information capacity analyses in NOMA systems[C]//Proceedings of the 29th Conference on Telecommunications Forum. Belgrade, Serbia: IEEE Press, 2021: 1-4.
|
17 |
MARAQA O, RAJASEKARAN A S, AL-AHMADI S, et al. A survey of rate-optimal power domain NOMA with enabling technologies of future wireless networks. IEEE Communications Surveys[WT《Times New Roman》]& Tutorials, 2020, 22(4): 2192- 2235.
|
18 |
谭景戈, 毛翔宇, 郑建宏. 基于簇级匈牙利与联盟博弈联合的CF mMIMO导频分配算法. 电讯技术, 2023, 63(11): 1817- 1823.
|
|
TAN J G, MAO X Y, ZHENG J H. Pilot allocation algorithm in CF mMIMO systems based on cluster-level Hungarian with coalition game. Telecommunication Engineering, 2023, 63(11): 1817- 1823.
|
19 |
AMRI M M, TRAN N M, PARK J H, et al. Demo: demonstration of Reconfigurable Intelligent Surface (RIS)-assisted simultaneous wireless information and power transfer[C]//Proceedings of IEEE International Conference on Communications. Washington D. C., USA: IEEE Press, 2022: 1-2.
|
20 |
CHOI K W, HWANG S I, AZIZ A A, et al. Simultaneous wireless information and power transfer for Internet of things: novel receiver design and experimental validation. IEEE Internet of Things Journal, 2020, 7(4): 2996- 3012.
doi: 10.1109/JIOT.2020.2964302
|
21 |
ASHRAF N, SHEIKH S A, AHMAD KHAN S, et al. Simultaneous wireless information and power transfer with cooperative relaying for next-generation wireless networks: a review. IEEE Access, 2021, 9, 71482- 71504.
|
22 |
UWAECHIA A N, MAHYUDDIN N M. Spectrum and energy efficiency optimization for hybrid precoding-based SWIPT-enabled mmWave mMIMO-NOMA systems. IEEE Access, 2020, 8, 139994- 140007.
doi: 10.1109/ACCESS.2020.3013305
|
23 |
MALI M D, CHORAGE S S. Spectrally efficient multiple input multiple output non-orthogonal multiple access technique for future wireless communication[C]//Proceedings of the 2nd Asian Conference on Innovation in Technology. Washington D. C., USA: IEEE Press, 2022: 1-5.
|
24 |
ÖZCAN T, TURGUT A M Y. Constant envelope precoding and non-orthogonal multiple access for massive MIMO systems[C]//Proceedings of the 28th Signal Processing and Communications Applications Conference. Gaziantep, Turkey: IEEE Press, 2020: 1-4.
|
25 |
BENJEBBOUR A, LI A X, SAITO Y, et al. System-level performance of downlink NOMA for future LTE enhancements[C]//Proceedings of IEEE Globecom Workshops. Washington D. C., USA: IEEE Press, 2013: 66-70.
|