| 1 |
ZHOU L J, CUI P, ZHANG X X, et al. Adversarial eigen attack on BlackBox models[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2022: 15233-15241.
|
| 2 |
LAYKAVIRIYAKUL P , PHAISANGITTISAGUL E . Collaborative Defense-GAN for protecting adversarial attacks on classification system. Expert Systems with Applications, 2023, 214, 118957.
doi: 10.1016/j.eswa.2022.118957
|
| 3 |
|
| 4 |
|
| 5 |
DING X H, ZHANG X Y, HAN J G, et al. Scaling up your kernels to 31×31: revisiting large kernel design in CNNs[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2022: 11953-11965.
|
| 6 |
LONG Y X, WEN Y P, HAN J H, et al. CapDet: unifying dense captioning and open-world detection pretraining[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2023: 15233-15243.
|
| 7 |
MA J, GANCHEV K, WEISS D. State-of-the-art Chinese word segmentation with Bi-LSTMs[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. [S. l. ]: ACL, 2018: 4902-4908.
|
| 8 |
|
| 9 |
|
| 10 |
|
| 11 |
XU H , MA Y , LIU H C , et al. Adversarial attacks and defenses in images, graphs and text: a review. International Journal of Automation and Computing, 2020, 17 (2): 151- 178.
doi: 10.1007/s11633-019-1211-x
|
| 12 |
GUO H C, ZHANG Q L, LUO J W, et al. Practical deep dispersed watermarking with synchronization and fusion[C]//Proceedings of the 31st ACM International Conference on Multimedia. New York, USA: ACM Press, 2023: 7922-7932.
|
| 13 |
|
| 14 |
|
| 15 |
PAPERNOT N, MCDANIEL P, SWAMI A, et al. Crafting adversarial input sequences for recurrent neural networks[C]//Proceedings of the MILCOM IEEE Military Communications Conference. Washington D.C., USA: IEEE Press, 2016: 49-54.
|
| 16 |
YANG P , CHEN J , HSIEH C J , et al. Greedy attack and gumbel attack: generating adversarial examples for discrete data. Journal of Machine Learning Research, 2020, 21 (43): 1- 36.
|
| 17 |
SAMUELSON W , ZECKHAUSER R . Status quo bias in decision making. Journal of Risk and Uncertainty, 1988, 1 (1): 7- 59.
doi: 10.1007/BF00055564
|
| 18 |
王文琦, 汪润, 王丽娜, 等. 面向中文文本倾向性分类的对抗样本生成方法. 软件学报, 2019, 30 (8): 2415- 2427.
|
|
WANG W Q , WANG R , WANG L N , et al. Adversarial examples generation approach for tendency classification on Chinese texts. Journal of Software, 2019, 30 (8): 2415- 2427.
|
| 19 |
仝鑫, 王罗娜, 王润正, 等. 面向中文文本分类的词级对抗样本生成方法. 信息网络安全, 2020, 20 (9): 12- 16.
|
|
TONG X , WANG L N , WANG R Z , et al. A word-level adversarial sample generation method for Chinese text categorization. Information Network Security, 2020, 20 (9): 12- 16.
|
| 20 |
JIN R, WU C H. WordErrorSim: an adversarial examples generation method in Chinese by erroneous knowledge[C]//Proceedings of the 2021 International Conference on Compute and Data Analysis. New York, USA: ACM Press, 2021: 155-161.
|
| 21 |
王春东, 孙嘉琪, 杨文军. 基于矫正理解的中文文本对抗样本生成方法. 计算机工程, 2023, 49 (2): 37- 45.
doi: 10.19678/j.issn.1000-3428.0065762
|
|
WANG C D , SUN J Q , YANG W J . A method for generating adversarial samples of Chinese text based on corrective understanding. Computer Engineering, 2023, 49 (2): 37- 45.
doi: 10.19678/j.issn.1000-3428.0065762
|
| 22 |
李相葛, 罗红, 孙岩. 基于汉语特征的中文对抗样本生成方法. 软件学报, 2023, 34 (11): 5143- 5161.
|
|
LI X G , LUO H , SUN Y . A method for generating Chinese adversarial samples based on Chinese features. Journal of Software, 2023, 34 (11): 5143- 5161.
|
| 23 |
|
| 24 |
|
| 25 |
张鹏. 论文字图形的视觉心理特征[D]. 桂林: 广西师范大学, 2010.
|
|
ZHANG P. On the visual psychological characteristics of characters and graphics[D]. Guilin: Guangxi Normal University, 2010. (in Chinese)
|
| 26 |
于海燕, 陆慧娟, 郑文斌. 情感分类中基于词性嵌入的特征权重计算方法. 计算机工程与应用, 2017, 53 (22): 121- 125.
|
|
YU H Y , LU H J , ZHENG W B . Feature weighting method based on part of speech embedding for sentiment classification. Computer Engineering and Applications, 2017, 53 (22): 121- 125.
|
| 27 |
OU H X , YU L , TIAN S W , et al. An adversarial-example generation method for Chinese sentiment tendency classification based on audiovisual confusion and contextual association. Knowledge and Information Systems, 2023, 65 (12): 5231- 5258.
doi: 10.1007/s10115-023-01946-y
|
| 28 |
黄大方. 四角号码法及其优化. 汕头大学学报, 1994 (2): 1- 11.
|
|
HUANG D F . Four-corner numbering method and its optimization. Journal of Shantou University, 1994 (2): 1- 11.
|
| 29 |
JOHNSON R, ZHANG T. Deep pyramid convolutional neural networks for text categorization[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics. [S. l. ]: ACL, 2017: 562-570.
|
| 30 |
|
| 31 |
|