| 1 |
ZHOU T . Progresses and challenges in link prediction. iScience, 2021, 24 (11): 103217.
doi: 10.1016/j.isci.2021.103217
|
| 2 |
ARRAR D , KAMEL N , LAKHFIF A . A comprehensive survey of link prediction methods. The Journal of Supercomputing, 2024, 80 (3): 3902- 3942.
doi: 10.1007/s11227-023-05591-8
|
| 3 |
KUMAR A , SINGH S S , SINGH K , et al. Link prediction techniques, applications, and performance: a survey. Physica A: Statistical Mechanics and Its Applications, 2020, 553, 124289.
doi: 10.1016/j.physa.2020.124289
|
| 4 |
ABDOLHOSSEINI-QOMI A M , YAZDANI N , ASADPOUR M . Overlapping communities and the prediction of missing links in multiplex networks. Physica A: Statistical Mechanics and Its Applications, 2020, 554, 124650.
doi: 10.1016/j.physa.2020.124650
|
| 5 |
DAUD N N , AB HAMID S H , SAADOON M , et al. Applications of link prediction in social networks: a review. Journal of Network and Computer Applications, 2020, 166, 102716.
doi: 10.1016/j.jnca.2020.102716
|
| 6 |
|
| 7 |
PALLA G , DERÉNYI I , FARKAS I , et al. Uncovering the overlapping community structure of complex networks in nature and society. Nature, 2005, 435 (7043): 814- 818.
doi: 10.1038/nature03607
|
| 8 |
李贞, 吴勇, 耿海军. 基于重引力搜索链接预测和评分传播的大数据推荐系统. 计算机应用与软件, 2020, 37 (2): 39- 47.
|
|
LI Z , WU Y , GENG H J . Big data recommender system based on gravitational search for link prediction and ratings propagation. Computer Applications and Software, 2020, 37 (2): 39- 47.
|
| 9 |
杨荣泰, 邵玉斌, 杜庆治, 等. 基于子图结构语义增强的少样本知识图谱补全. 北京邮电大学学报, 2024, 47 (4): 71-76, 89.
|
|
YANG R T , SHAO Y B , DU Q Z , et al. Few-shot knowledge graph completion based on subgraph structure semantic enhancement. Journal of Beijing University of Posts and Telecommunications, 2024, 47 (4): 71-76, 89.
|
| 10 |
刘娟, 段友祥, 陆誉翕, 等. 引入知识增强和对比学习的知识图谱补全. 计算机工程, 2024, 50 (7): 112- 122.
doi: 10.19678/j.issn.1000-3428.0068020
|
|
LIU J , DUAN Y X , LU Y X , et al. Knowledge graph completion with knowledge enhancement and contrastive learning. Computer Engineering, 2024, 50 (7): 112- 122.
doi: 10.19678/j.issn.1000-3428.0068020
|
| 11 |
LIBEN-NOWELL D, KLEINBERG J. The link prediction problem for social networks[C]//Proceedings of the 12th International Conference on Information and Knowledge Management. New York, USA: ACM Press, 2003: 556-559.
|
| 12 |
DOROGOVTSEV S N , MENDES J F F . Evolution of networks. Advances in Physics, 2002, 51 (4): 1079- 1187.
doi: 10.1080/00018730110112519
|
| 13 |
NEWMAN M E J . The structure and function of complex networks. SIAM Review, 2003, 45 (2): 167- 256.
doi: 10.1137/S003614450342480
|
| 14 |
NEWMAN M E . Clustering and preferential attachment in growing networks. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 2001, 64 (2): 025102.
doi: 10.1103/PhysRevE.64.025102
|
| 15 |
LÜ L Y , JIN C H , ZHOU T . Similarity index based on local paths for link prediction of complex networks. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 2009, 80 (4): 046122.
doi: 10.1103/PhysRevE.80.046122
|
| 16 |
ADAMIC L A , ADAR E . Friends and neighbors on the Web. Social Networks, 2003, 25 (3): 211- 230.
doi: 10.1016/S0378-8733(03)00009-1
|
| 17 |
WANG C, SATULURI V, PARTHASARATHY S. Local probabilistic models for link prediction[C]//Proceedings of the 7th IEEE International Conference on Data Mining (ICDM 2007). Washington D.C., USA: IEEE Press, 2007: 322-331.
|
| 18 |
PEROZZI B, AL-RFOU R, SKIENA S. DeepWalk: online learning of social representations[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM Press, 2014: 701-710.
|
| 19 |
GROVER A, LESKOVEC J. node2vec: scalable feature learning for networks[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM Press, 2016: 855-864.
|
| 20 |
GOODFELLOW I , BENGIO Y , COURVILLE A . Deep learning. Cambrige, USA: MIT Press, 2016.
|
| 21 |
|
| 22 |
|
| 23 |
CAI L, JI S. A multi-scale approach for graph link prediction[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2020: 3308-3315.
|
| 24 |
CHAMBERLAIN B P, SHIROBOKOV S, ROSSI E, et al. Graph neural networks for link prediction with subgraph sketching[EB/OL]. [2024-05-08]. https://arxiv.org/abs/2209.15486.
|
| 25 |
|
| 26 |
ZHANG M, CHEN Y. Weisfeiler — Lehman neural machine for link prediction[C]// Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM Press, 2017: 575-583.
|
| 27 |
ZHANG M, CHEN Y. Link prediction based on graph neural networks[C]//Proceedings of the 32nd International Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2018: 5171-5181.
|
| 28 |
CAI Y , LIU S , ZHENG W , et al. Towards generating hop-constrained s — t simple path graphs. Proceedings of the ACM on Management of Data, 2023, 1 (1): 1- 26.
|
| 29 |
BARABÁSI A L , ALBERT R . Emergence of scaling in random networks. Science, 1999, 286 (5439): 509- 512.
doi: 10.1126/science.286.5439.509
|
| 30 |
TANG J, QU M, WANG M, et al. LINE: large-scale information network embedding[C]//Proceedings of the 24th International Conference on World Wide Web. Washington D.C., USA: IEEE Press, 2015: 1067-1077.
|