1 |
QIN B W, WANG L H, HUI B Y, et al. SUN: exploring intrinsic uncertainties in Text-to-SQL parsers[C]//Proceedings of the 29th International Conference on Computational Linguistics. Gyeongju, Republic of Korea: [s. n. ], 2022: 5298-5308.
|
2 |
黄君扬, 王振宇, 梁家卿, 等. 基于自裁剪异构图的NL2SQL模型. 计算机工程, 2022, 48 (9): 71-77, 88.
doi: 10.19678/j.issn.1000-3428.0064560
|
|
HUANG J Y , WANG Z Y , LIANG J Q , et al. NL2SQL model based on self-pruning heterogeneous graph. Computer Engineering, 2022, 48 (9): 71-77, 88.
doi: 10.19678/j.issn.1000-3428.0064560
|
3 |
胡亚红, 刘亚冬, 朱正东, 等. 辅助任务增强的中文跨域NL2SQL算法. 国防科技大学学报, 2024, 46 (2): 197- 204.
|
|
HU Y H , LIU Y D , ZHU Z D , et al. Chinese cross-domain NL2SQL algorithm enhanced by auxiliary task. Journal of National University of Defense Technology, 2024, 46 (2): 197- 204.
|
4 |
CAI Z F, LI X Y, HUI B Y, et al. STAR: SQL guided pre-training for context-dependent Text-to-SQL parsing[C]//Proceedings of the Findings of the Association for Computational Linguistics: EMNLP 2022. Stroudsburg, USA: ACL, 2022: 1235-1247.
|
5 |
RAI D, WANG B L, ZHOU Y L, et al. Improving generalization in language model-based Text-to-SQL semantic parsing: two simple semantic boundary-based techniques[C]//Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers). Stroudsburg, USA: ACL, 2023: 150-160.
|
6 |
CAO R S, CHEN L, CHEN Z, et al. LGESQL: line graph enhanced Text-to-SQL model with mixed local and non-local relations[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). Stroudsburg, USA: ACL, 2021: 2541-2555.
|
7 |
XIANG Y, ZHANG Q W, ZHANG X, et al. G3R: a graph-guided generate-and-rerank framework for complex and cross-domain Text-to-SQL generation[C]//Proceedings of the Findings of the Association for Computational Linguistics: ACL 2023. Stroudsburg, USA: ACL, 2023: 338-352.
|
8 |
LI J Y , HUI B Y , CHENG R , et al. Graphix-T5: mixing pre-trained transformers with graph-aware layers for Text-to-SQL parsing. Proceedings of the AAAI Conference on Artificial Intelligence, 2023, 37 (11): 13076- 13084.
doi: 10.1609/aaai.v37i11.26536
|
9 |
COLIN R , NOAM S , ADAM R , et al. Exploring the limits of transfer learning with a unified text-to-text transformer. The Journal of Machine Learning Research, 2020, 21 (1): 5485- 5551.
|
10 |
|
11 |
CHEN Z R, CHEN S J, WHITE M, et al. Text-to-SQL error correction with language models of code[C]//Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers). Stroudsburg, USA: ACL, 2023: 1359-1372.
|
12 |
RUBIN O, BERANT J. SmBoP: semi-autoregressive bottom-up semantic parsing[C]//Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg, USA: ACL, 2021: 311-324.
|
13 |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Berlin, Germany: Springer, 2017: 6000-6010.
|
14 |
ZHAO K , XU H , CHENG Y , et al. Representation iterative fusion based on heterogeneous graph neural network for joint entity and relation extraction. Knowledge-Based Systems, 2021, 219, 106888.
doi: 10.1016/j.knosys.2021.106888
|
15 |
BANG N M, LEE J, KOO M W. Task-optimized adapters for an end-to-end task-oriented dialogue system[C]//Proceedings of the Findings of the Association for Computational Linguistics: ACL 2023. Stroudsburg, USA: ACL, 2023: 7355-7369.
|
16 |
SANDLER M, HOWARD A, ZHU M L, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 4510-4520.
|
17 |
HOULSBY N, GIURGIU A, JASTRZEBSKI S, et al. Parameter-efficient transfer learning for NLP[C]//Proceedings of International Conference on Machine Learning. [S. l. ]: PMLR, 2019: 2790-2799.
|
18 |
WANG Y, WANG W S, JOTY S, et al. CodeT5: identifier-aware unified pre-trained encoder-decoder models for code understanding and generation[C]//Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA: ACL, 2021: 8696-8708.
|
19 |
YU T, ZHANG R, YANG K, et al. Spider: a large-scale human-labeled dataset for complex and cross-domain semantic parsing and Text-to-SQL task[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA: ACL, 2018: 3911-3921.
|
20 |
周浩冉. 基于语义路径注意力网络的NL2SQL模型研究及应用[D]. 上海: 东华大学, 2023.
|
|
ZHOU H R. Research and application of NL2SQL model based on semantic path attention network[D]. Shanghai: Donghua University, 2023. (in Chinese)
|
21 |
|
22 |
GAN Y J, CHEN X Y, XIE J X, et al. Natural SQL: making SQL easier to infer from natural language specifications[C]//Proceedings of the Findings of the Association for Computational Linguistics: EMNLP 2021. Stroudsburg, USA: ACL, 2021: 2030-2042.
|
23 |
HUI B Y, GENG R Y, WANG L H, et al. S2SQL: injecting syntax to question-schema interaction graph encoder for Text-to-SQL parsers[C]//Proceedings of the Findings of the Association for Computational Linguistics: ACL 2022. Stroudsburg, USA: ACL, 2022: 1254-1262.
|
24 |
ZHONG V, LEWIS M, WANG S I, et al. Grounded adaptation for zero-shot executable semantic parsing[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP). Stroudsburg, USA: ACL, 2020: 6869-6882.
|
25 |
LIN X V, SOCHER R, XIONG C M. Bridging textual and tabular data for cross-domain Text-to-SQL semantic parsing[C]//Proceedings of the Findings of the Association for Computational Linguistics: EMNLP 2020. Stroudsburg, USA: ACL, 2020: 4870-4888.
|
26 |
SCHOLAK T, SCHUCHER N, BAHDANAU D. PICARD: parsing incrementally for constrained auto-regressive decoding from language models[EB/OL]. [2024-01-02]. https://arxiv.org/abs/2109.05093v1.
|
27 |
QI J X, TANG J Y, HE Z W, et al. RASAT: integrating relational structures into pretrained Seq2Seq model for Text-to-SQL[C]//Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing (EMNLP). Stroudsburg, USA: ACL, 2022: 3215-3229.
|
28 |
ZENG L, PARTHASARATHI S H K, HAKKANI-TUR D. N-best hypotheses reranking for Text-to-SQL systems[C]//Proceedings of the IEEE Spoken Language Technology Workshop (SLT). Washington D. C., USA: IEEE Press, 2023: 663-670.
|
29 |
LI H Y , ZHANG J , LI C P , et al. RESDSQL: decoupling schema linking and skeleton parsing for Text-to-SQL. Proceedings of the AAAI Conference on Artificial Intelligence, 2023, 37 (11): 13067- 13075.
doi: 10.1609/aaai.v37i11.26535
|
30 |
|
31 |
|
32 |
|
33 |
|