康雁, 杨其越, 李浩, 梁文韬, 李晋源, 崔国荣, 王沛尧
传统的文本分类方法仅使用一种模型进行分类,容易忽略不同类别特征词出现交叉的情况,影响分类性能。为提高文本分类的准确率,提出基于主题相似性聚类的文本分类算法。通过CHI和WordCount相结合的方法提取类特征词,利用K-means算法进行聚类并提取簇特征词构成簇特征词库。在此基础上,通过Adaptive Strategy算法自适应地选择fasttext、TextCNN或RCNN模型进行分类,得到最终分类结果。在AG News数据集上的实验结果表明,该算法可较好地解决不同类别特征词交叉的问题,与单独使用的fasttext、TextCNN、RCNN模型相比,其文本分类性能显著提升。