Author Login Chief Editor Login Reviewer Login Editor Login Remote Office

Computer Engineering ›› 2006, Vol. 32 ›› Issue (3): 188-190.

• Artificial Intelligence and Recognition Technology • Previous Articles     Next Articles

A Genetic K-means Algorithm for Spatial Clustering

WANG Jiayao1, ZHANG Xueping1,2, ZHOU Haiyan1   

  1. 1. Institute of Surveying and Mapping, PLA Information Engineering University, Zhengzhou 450052;2.Department of Computer Science, Henan University of Technology, Zhengzhou 450052
  • Online:2006-02-05 Published:2006-02-05

一个用于空间聚类分析的遗传 K-均值算法

王家耀 1,张雪萍1,2,周海燕1   

  1. 1. 解放军信息工程大学测绘学院, 郑州450052;2. 河南工业大学计算机科学系,郑州450052

Abstract: Spatial data mining (SDM) is a branch of data mining (DM). Spatial clustering is an important research topic in SDM. This paper proposes a novel genetic K-means algorithm for spatial clustering after analyzing advantages and disadvantages of genetic algorithm and K-means algorithm. The spatial clustering algorithm can give attention to local constringency and the whole constringency. The experimental results show that it is better than simple genetic algorithm and tradition K-means algorithm.

Key words: Spatial data mining; Spatial clustering; Genetic algorithm; K-means algorithm;Genetic K-means algorithm

摘要: 空间数据挖掘是数据挖掘的一个新的分支,空间聚类分析是空间数据挖掘中的一个重要研究课题。本文在分析遗传算法及K–均值算法的优越性和不足的基础上,设计了一种遗传K-均值空间聚类分析算法,该算法兼顾了局部收敛和全局收敛性能。实验表明,其结果优于传统K-均值聚类方法及单纯的遗传算法聚类。

关键词: 空间数据挖掘;空间聚类;遗传算法;K-均值算法;遗传K-均值算法