Abstract:
Spatial data mining (SDM) is a branch of data mining (DM). Spatial clustering is an important research topic in SDM. This paper proposes a novel genetic K-means algorithm for spatial clustering after analyzing advantages and disadvantages of genetic algorithm and K-means algorithm. The spatial clustering algorithm can give attention to local constringency and the whole constringency. The experimental results show that it is better than simple genetic algorithm and tradition K-means algorithm.
Key words:
Spatial data mining; Spatial clustering; Genetic algorithm; K-means algorithm;Genetic K-means algorithm
摘要: 空间数据挖掘是数据挖掘的一个新的分支,空间聚类分析是空间数据挖掘中的一个重要研究课题。本文在分析遗传算法及K–均值算法的优越性和不足的基础上,设计了一种遗传K-均值空间聚类分析算法,该算法兼顾了局部收敛和全局收敛性能。实验表明,其结果优于传统K-均值聚类方法及单纯的遗传算法聚类。
关键词:
空间数据挖掘;空间聚类;遗传算法;K-均值算法;遗传K-均值算法
WANG Jiayao, ZHANG Xueping, ZHOU Haiyan. A Genetic K-means Algorithm for Spatial Clustering[J]. Computer Engineering, 2006, 32(3): 188-190.
王家耀,张雪萍,周海燕. 一个用于空间聚类分析的遗传 K-均值算法[J]. 计算机工程, 2006, 32(3): 188-190.