Author Login Chief Editor Login Reviewer Login Editor Login Remote Office

Computer Engineering ›› 2006, Vol. 32 ›› Issue (8): 52-54,58.

• Degree Paper • Previous Articles     Next Articles

Function Approximation Research Based on Support Vector Machine

DU Xinhua1,2, CHEN Zengqiang2, YUAN Zhuzhi2   

  1. 1. Tianjin Test Technology Research Institute, Tianjin 300141; 2. Dept. of Automation, College of Information, Nankai University, Tianjin 300071
  • Online:2006-04-20 Published:2006-04-20

基于支持向量机函数逼近的性能研究

杜新华1,2,陈增强2,袁著祉2   

  1. 1. 天津市检测技术研究所,天津 300141;2. 南开大学信息学院自动化系,天津 300071

Abstract: The simulation analysis and comparisons of the function approximation by SVM and NN are done in this paper, the results indicate that SVM has better performance than NN in the dependence on samples, insensitivity to noise and character of generalization with small-scale samples

Key words: Support vector machine(SVM); Statistic learning theory; Neural network; Function approximation

摘要: 通过仿真分析比较支持向量机与前馈神经网络在非线性函数逼近的结果,得出在小样本下,SVM 的样本依赖程度、抗噪声能力和泛化性能都优于前馈神经网络。

关键词: 支持向量机;统计学习理论;神经网络;函数逼近