Author Login Chief Editor Login Reviewer Login Editor Login Remote Office

Computer Engineering ›› 2006, Vol. 32 ›› Issue (8): 124-126,130.

• Networks and Communications • Previous Articles     Next Articles

Prediction of Ethernet Traffic by FIR Neural Network

LIN Xuegang1, ZHENG Chengxing2, DOU Min3, XU Rongsheng4   

  1. 1. Institute of Artificial Intelligence, Zhejiang University, Hangzhou 310027; 2. Educational Technology Center, Beijing International Studies University, Beijing 100024; 3. Beijing Jinyuanlongmai Information Technology Co., Ltd., Beijing 100043;4. Computing Center, Institute of High Energy Physics, CAS, Beijing 100049
  • Online:2006-04-20 Published:2006-04-20

基于 FIR 神经网络的以太网网络流量预测

林雪纲 1,郑成兴2,窦旻 3,许榕生4   

  1. 1. 浙江大学人工智能研究所,杭州 310027;2. 北京第二外国语学院教育技术中心,北京 100024;3. 北京金元龙脉信息科技有限公司,北京 100043;4. 中国科学院高能物理研究所计算中心,北京 100049

Abstract: To predict the Ethernet traffic, R/S analysis is done firstly to get the Hurst coefficient and choose the suitable network architecture, then,prediction results are compared while the order of the FIR filter or the training algorithms (Wan or Back-Tsio algorithms) are varied. The results show that the order of FIR filter depends on the cycle of the traffic and Wan algorithm is more accurate for predicting network traffic whose Hurst coefficient is near 1.

Key words: Neural network; FIR; Network traffic; Prediction

摘要: 对原始数据进行R/S 分析得到Hurst 系数以选择合适的神经网络结构,重点分析了FIR 的阶及两种不同学习算法(Wan 和Back-Tsio算法)对预测结果的影响。结果表明FIR 阶的选择依赖于流量数据的变化周期,Wan 算法在Hurst 数接近1 的网络流量预测中具有更好的精确性

关键词: 神经网络;FIR;网络流量;预测