Author Login Chief Editor Login Reviewer Login Editor Login Remote Office

Computer Engineering ›› 2006, Vol. 32 ›› Issue (11): 209-210,218.

• Artificial Intelligence and Recognition Technology • Previous Articles     Next Articles

Study on Topic Partition Based on Genetic Algorithm

FU Jianlian,CHEN Qunxiu   

  1. State Key Lab of Intelligent Technology and System, Department of Computer Science and Technology, Tsinghua University, Beijing 100084
  • Online:2006-06-05 Published:2006-06-05

一种基于遗传算法的主题划分方法

傅间莲,陈群秀   

  1. 清华大学计算机系智能技术与系统国家重点实验室,北京 100084

Abstract: This paper establishes VSM for the whole article based on paragraph, then proposes an idea for multi-topic text partitioning based on GA. It solves the problem of chapter structural analysis in multi-topic article and makes the abstract of the multi-topic to have more general content and more balanced structure. The experiment on close test shows that the precision of topic partition for multi-topic text and single-topic text reaches 89.3% and 94.6% respectively.

Key words: Automatic abstraction; Vector space model; Genetic algorithm(GA); Topic segmentation

摘要: 提出了一个通过建立段落向量空间模型,根据遗传算法进行文本主题划分的算法,解决了文章的篇章结构分析问题,使得多主题文章的文摘更具内容全面性与结构平衡性。实验结果表明,该算法对多主题文章的主题划分准确率为89.3%,对单主题文章的主题划分准确率为94.6%。

关键词: 自动文摘;向量空间模型;遗传算法;主题划分