Author Login Chief Editor Login Reviewer Login Editor Login Remote Office

Computer Engineering ›› 2006, Vol. 32 ›› Issue (20): 185-187.

• Artificial Intelligence and Recognition Technology • Previous Articles     Next Articles

Personalized KDD Approach Based on Classification Model

MENG Zuqiang1, CAI Zixing2   

  1. (1. College of Computer and Information Engineering, Guangxi University, Nanning 530004; 2. College of Information Science & Engineering, Central South University, Changsha 410083)
  • Received:1900-01-01 Revised:1900-01-01 Online:2006-10-20 Published:2006-10-20

基于分类模型的数据库个性化知识发现方法

蒙祖强1,蔡自兴2   

  1. (1. 广西大学计算机与信息工程学院,南宁 530004;2. 中南大学信息科学与工程学院,长沙 410083)

Abstract: This paper proposes PKDA, an effective method for finding personalized knowledge. By way of deleting the superabundant condition attributes ring upon ring, the interested information is discovered. It gives analyses and comparison of experiment results to illustrate the efficiency and feasibility of the algorithm.

Key words: Knowledge discovery database(KDD), Rough Set, Distinguish matrix, Reduction

摘要: 利用RS理论和方法提出了个性化知识发现方法——PKDA算法。该算法可以有效地把那些冗余的和用户不感兴趣的信息层层去除,发现用户真正感兴趣的知识。该文给出了实验分析与对比结果,证实了算法的有效性和可行性。

关键词: 数据库知识发现, Rough set, 分辨矩阵, 约简