Abstract:
This paper discusses problem of stock pattern dependency mining on data streams, proposes a mining algorithm. This algorithm includes pre-process steps such as time series segmentation and pattern presentation, using 4 item rule tuples to present the dependency and to calculate the confidence and support degree, and the synopsis structure for two and N data streams. Experiments on stock price data and a real system show that the algorithm is effective and can be used in forecasting.
Key words:
data stream,
data mining,
pattern dependency mining
摘要: 针对数据流间“模式依赖”问题,给出了一种模式依赖挖掘算法,该算法包括:挖掘前时间序列分段和模式表示,条件规则元组的创建和维护,模式依赖的置信度和支持度计算,2个或N个数据流概要结构的设计等。股票数据实验和实际系统表明,该挖掘方法能够有效地发现数据流间的模式依赖,可用于预测。
关键词:
流数据,
数据挖掘,
模式依赖挖掘
CLC Number:
DENG Wei-wei; PENG Hong; HU Jin-song. Data Stream Pattern Dependency Mining and Its Application[J]. Computer Engineering, 2007, 33(17): 43-45.
邓维维;彭 宏;胡劲松. 数据流模式依赖挖掘及应用[J]. 计算机工程, 2007, 33(17): 43-45.