Abstract:
Finding frequent itemset is a pivotal technology and stage in association rules mining application. Most studies adopt Apriori-like candidate set generation-and-test approach, but candidate set generation is still costly. This paper proposes an improved AprioriTid algorithm to improve the algorithmic executive efficiency, which is based on candidate set Lk address-mapping approach of Hash technology.
Key words:
association rules,
frequent item set,
AprioriTid,
Hash
摘要: 发现频繁项集是关联规则挖掘应用的关键,针对采用Apriori类的候选项目集生成-检验方法导致候选项目集产生的代价很高问题,该文提出一种基于散列的快速AprioriTid改进算法,在AprioriTid算法的基础上采用基于候选项Lk地址的哈希映射方法,提高了算法的执行效率。
关键词:
关联规则,
频繁项目集,
AprioriTid算法,
散列
CLC Number:
YU Yan-yan; LI Shao-zi. Improvement of AprioriTid Algorithm for Association Rules Based on Hash Technology[J]. Computer Engineering, 2008, 34(5): 60-62.
俞燕燕;李绍滋. 基于散列的关联规则AprioriTid改进算法[J]. 计算机工程, 2008, 34(5): 60-62.