Abstract:
This paper researches the design of matrix A for a class of S box. It gives necessary and sufficient condition whether a circular matrix is inverse, and shows the expression of S(X)=AXeb in GF(2n) has at least three terms if matrix A is chosen to be an inverse circular matrix in GF(2) which is not identity matrix. So it is appropriate to design A to be an inverse circular matrix in designing this class of S box. Choosing a proper inverse circular matrix A and making the polynomial expression of S(X)=AXeb in GF(2n) be the most terms to guarantee a good resistance against the interpolation attacks and higher order differentials cryptanalysis.
Key words:
S box,
inverse circular matrix,
polynomial expression
摘要: 对一类S盒S(X)=AXeb中矩阵A的构造和设计问题进行研究,给出二元域GF(2)上循环矩阵A可逆的一个充要条件,证明了矩阵A只要选取为与单位阵不等的nn可逆循环矩阵,就可使得S盒S(X)=AXeb在有限域GF(2n)中的多项式表达式至少有3项系数不为0,从而在构造该类S盒时,将矩阵A选取为可逆循环矩阵是可行的。适当地选取可逆循环矩阵A,使得S(X)=AXeb在有限域GF(2n)中的多项式表达式的非零系数尽可能多,就能在一定程度上抵抗插值攻击和高阶差分密码分析。
关键词:
S盒,
可逆循环矩阵,
多项式表达式
CLC Number:
WANG Nian-ping. Research on S Box Design[J]. Computer Engineering, 2008, 34(15): 166-167.
王念平. 一类S盒的设计研究[J]. 计算机工程, 2008, 34(15): 166-167.